精英家教网 > 高中数学 > 题目详情
已知定义在R上的奇函数f(x)满足f(x+2e)=-f(x)(其中e=2.7182…),且在区间[e,2e]上是减函数.令a=,c=,则( )
A.f(a)<f(b)<f(c)
B.f(b)<f(c)<f(a)
C.f(c)<f(a)<f(b)
D.f(c)<f(b)<f(a)
【答案】分析:由f(x)是R上的奇函数及f(x+2e)=-f(x),可得f(x+2e)=f(-x),从而可知f(x)关于x=e对称,由f(x)在[e,2e]上的单调性可得f(x)在[0,e]上的单调性,由a,b,c的近似值可得其大小关系,进而得到f(a)、f(b)、f(c)的大小关系.
解答:解:∵f(x)是R上的奇函数,满足f(x+2e)=-f(x),
∴f(x+2e)=f(-x),
∴函数f(x)关于直线x=e对称,
∵f(x)在区间[e,2e]上为减函数,∴f(x)在区间[0,e]上为增函数,
∵a=≈0.3466,b=≈0.3662,c=≈0.3219,
∴c<a<b,∴f(c)<f(a)<f(b),
故选C.
点评:本题考查函数的奇偶性、单调性及其应用,考查学生灵活运用知识分析解决问题的能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的单调递增奇函数以f(x),若当0≤θ≤
π2
时,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x).当x<0时,f(x)=x2+2x.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)问:是否存在实数a,b(a≠b),使f(x)在x∈[a,b]时,函数值的集合为[
1
b
1
a
]
?若存在,求出a,b;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:大连二十三中学2011学年度高二年级期末测试试卷数学(理) 题型:选择题

已知定义在R上的奇函数,满足,且在区间[0,2]上是增函

数,则(     ).     

A.            B.

C.            D.

 

查看答案和解析>>

科目:高中数学 来源:2012届浙江省高二下学期期末考试理科数学试卷 题型:选择题

已知定义在R上的奇函数,满足,且在区间[0,1]上是增函

数,若方程在区间上有四个不同的根,则

(     )

(A)     (B)      (C)      (D)

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在R上的单调递增奇函数以f(x),若当0≤θ≤数学公式时,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案