精英家教网 > 高中数学 > 题目详情
精英家教网函数y=Asin(ωx+φ)在一个周期内的图象如图,则y的表达式为(  )
A、y=3sin(x+
π
6
)
B、y=3sin(x+
π
3
)
C、y=3sin(2x+
π
6
)
D、y=3sin(2x+
π
3
)
分析:由图形可以得出,函数的周期是π,由公式可求得ω,又最大值为3,最小值为-3,故A的值为3或-3,又过点(-
π
6
,0)将其代入方程即可求得φ
解答:解:由图形知A=3,T=π,故ω=2
∴y=3sin(2x+φ)
又图象过点(-
π
6
,0)
故sin(-
π
3
+φ)=0解得φ=2kπ+
π
3
,k∈z
当k=0时,φ=
π
3

y的表达式为y=3sin(2x+
π
3
)

故选D
点评:本题考查由三角函数的图象求函数的解析式,求解本题的关键是求φ,本题代入的点是上升图象上的零点,故此时相位应是2kπ,k∈z,若代入的是递减区间上的零点,则相位是2kπ+π,k∈z,若代入的坐标是最值点,则不用讨论,此时情况是确定的,若代入的是其它点,一定要注意此时代入的点是递增区间上的还是递减区间上的零点,给出正确的相位.此处容易因为判断不准而出错,注意总结解题的规律.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数y=Asin(ωx+φ)(ω>0)与x轴的两个相邻的交点坐标为(-4,0),(2,0),则ω=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,某地一天从6时到14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b,则8时的温度大约为
 
°C(精确到1°C)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=Asin(ωx+φ)+C(A>0,ω>0,|φ|<
π2
)在同一周期中最高点的坐标为(2,2),最低点的坐标为(8,-4).
(I)求A,C,ω,φ的值;
(II)求出这个函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,是函数y=Asin(ωx+φ),(-π<φ<π)的图象的一段,O是坐标原点,P是图象的最高点,A点坐标为(5,0),若|
OP
|=
10
OP
OA
=15
,则此函数的解析式为
y=sin(
π
4
x-
π
4
)
y=sin(
π
4
x-
π
4
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:函数y=Asin(ωx+φ),在同一周期内,当x=
π
12
时取最大值y=4;当x=
12
时,取最小值y=-4,那么函数的解析式为:(  )

查看答案和解析>>

同步练习册答案