精英家教网 > 高中数学 > 题目详情
18.已知经过A(2,1),B(1,m)两点的直线的倾斜角为锐角,则实数m的取值范围是(  )
A.m<1B.m>-1C.-1<m<1D.m>1,或m<-1

分析 求出直线AB的斜率,根据倾斜角的范围,求出m的范围即可.

解答 解:∵A(2,1),B(1,m),
∴kAB=$\frac{m-1}{1-2}$=1-m,
∵直线的倾斜角为锐角,
∴1-m>0,
解得:m<1.
故选:A.

点评 本题考查了直线的倾斜角问题,考查斜率的求法,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>1)过点($\sqrt{3}$,$\frac{\sqrt{3}}{2}$),以椭圆的顶点为顶点的四边形面积为4$\sqrt{3}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设F1、F2分别为椭圆C的左右焦点,过F2的直线l与椭圆C交于不同两点M、N,记△F1MN的内切圆的面积为S,求当S取最大值时直线l的方程,并求出S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知P:?x∈(0,+∞),$x+\frac{1}{x}>a$,$q:a<\sqrt{3}$,则P是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若4x+2x+1+m>1对一切实数x成立,则实数m的取值范围是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a是函数$f(x)={({\frac{1}{3}})^x}+{log_{\frac{1}{3}}}x$的零点,若0<x0<a,则f(x0)的值满足(  )
A.f(x0)=0B.f(x0)<0C.f(x0)>0D.f(x0)的符号不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.对于函数y=f(x),定义域为D=[-2,2],以下命题正确的是(只要求写出命题的序号)①③④
①若函数y=f(x)在D上具有单调性,且f(0)>f(1),则y=f(x)是D上的递减函数;
②若f(-1)<f(0)<f(1)<f(2),则y=f(x)是D上的递增函数;
③若f(x)是D上的递减函数,对任意x∈D,使得f(x)-m≥0恒成立,则必须m≤f(2);
④若f(x)是D上的递增函数,存在x0∈D,使得f(x0)-m≥0成立,则必须m≤f(2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.为了缓解二诊备考压力,双流中学高三某6个班级从双流区“棠湖公园”等6个不同的景点中任意选取一个进行春游活动,其中1班、2班不去同一景点且均不去“棠湖公园”的不同的安排方式有多少种(  )
A.$A_5^2{6^4}$B.$C_5^2{6^4}$C.$A_5^2A_4^4$D.$C_5^2A_4^4$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知抛物线y=x2上存在两个不同的点M,N关于直线l:y=-kx+$\frac{9}{2}$对称,求k的取值范围(-∞,-$\frac{1}{4}$)∪($\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解不等式
(1)(x-a)(ax-1)<0 (a<0)
(2)log${\;}_{\frac{1}{2}}$(x2-1)≥1.

查看答案和解析>>

同步练习册答案