精英家教网 > 高中数学 > 题目详情

【题目】假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量,记一天中从甲地去乙地的旅客人数不超过900的概率为p0.p0的值为( )

(参考数据:若XN(μσ2),有P(μσ<X≤μσ)0.682 6P(μ2σ<X≤μ2σ)0.954 4P(μ3σ<X≤μ3σ)0.997 4.

A.0.954 4B.0.682 6

C.0.997 4D.0.977 2

【答案】D

【解析】

XN(800,502),知μ800σ50

依题设,P(700<x≤900)0.954 4

由正态分布的对称性,可得

p0P(X≤900)P(X≤800)P(800<X≤900)

P(700<X≤900)0.977 2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,

(1)求证:平面平面

(2)在线段上是否存在点,使得平面与平面所成锐二面角为?若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A. 命题“若,则”的否命题是“若,则

B. 命题“”的否定是“

C. 处有极值”是“”的充要条件

D. 命题“若函数有零点,则“”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。某运营公司为了了解某地区用户对其所提供的服务的满意度,随机调查了40个用户,得到用户的满意度评分如下:

用户编号

评分

用户编号

评分

用户编号

评分

用户编号

评分

1

2

3

4

5

6

7

8

9

10

78

73

81

92

95

85

79

84

63

86

11

12

13

14

15

16

17

18

19

20

88

86

95

76

97

78

88

82

76

89

21

22

23

24

25

26

27

28

29

30

79

83

72

74

91

66

80

83

74

82

31

32

33

34

35

36

37

38

39

40

93

78

75

81

84

77

81

76

85

89

用系统抽样法从40名用户中抽取容量为10的样本,且在第一分段里随机抽到的评分数据为92.

(1)请你列出抽到的10个样本的评分数据;

(2)计算所抽到的10个样本的均值和方差

(3)在(2)条件下,若用户的满意度评分在之间,则满意度等级为“级”。试应用样本估计总体的思想,根据所抽到的10个样本,估计该地区满意度等级为“级”的用户所占的百分比是多少?

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知件次品和件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出件次品或者检测出件正品时检测结束.

1)求第一次检测出的是次品且第二次检测出的是正品的概率;

2)已知每检测一件产品需要费用元,设表示直到检测出件次品或者检测出件正品时所需要的检测费用(单位:元),求的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年春节期间,因新冠肺炎疫情防控工作需要,两社区需要招募义务宣传员,现有六位大学生和甲、乙、丙三位党员教师志愿参加,现将他们分成两个小组分别派往两社区开展疫情防控宣传工作,要求每个社区都至少安排1位党员教师及3位大学生,且由于工作原因只能派往社区,则不同的选派方案种数为(

A.60B.90

C.120D.150

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点C的左、右焦点,过的直线lC交于AB两点,且的周长为

1)求C的方程;

2)若,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆)和圆,已知圆将椭圆的长轴三等分,椭圆右焦点到右准线的距离为,椭圆的下顶点为,过坐标原点且与坐标轴不重合的任意直线与圆相交于点

(1)求椭圆的方程;

(2)若直线分别与椭圆相交于另一个交点为点.

①求证:直线经过一定点;

②试问:是否存在以为圆心,为半径的圆,使得直线和直线都与圆相交?若存在,请求出实数的范围;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两地相距300千米,汽车从甲地匀速行驶到乙地,速度不超过100千米/小时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成,可变部分与速度(千米/小时)的平方成正比,比例系数为),固定部分为1000.

1)把全程运输成本(元)表示为速度(千米/小时)的函数,并指出这个函数的定义域;

2)为了使全程运输成本最小,汽车应以多大速度行驶?

查看答案和解析>>

同步练习册答案