精英家教网 > 高中数学 > 题目详情

圆心在(a,b),半径为r的圆的参数方程为________.

答案:
解析:

(α为参数)(0≤α<2π)


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分,请在答题纸指定区域内作答,解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:(几何证明选讲)
如图,从O外一点P作圆O的两条切线,切点分别为A,B,
AB与OP交于点M,设CD为过点M且不过圆心O的一条弦,
求证:O,C,P,D四点共圆.
B.选修4-2:(矩阵与变换)
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=[
 
1
1
],并且矩阵M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
C.选修4-4:(坐标系与参数方程)
在极坐标系中,曲线C的极坐标方程为p=2
2
sin(θ-
π
4
),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=1+
4
5
t
y=-1-
3
5
t
(t为参数),求直线l被曲线C所截得的弦长.
D.选修4-5(不等式选讲)
已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x-1被圆C所截得的弦长为2
2

(1)求过圆心且与直线l垂直的直线m方程;
(2)点P在直线m上,求以A(-1,0),B(1,0)为焦点且过P点的长轴长最小的椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A、B为半椭圆
y24
+x2=1(y≥0)
的两个顶点,F为上焦点,将半椭圆和线段AB合在一起称为曲线C.
(1)求△ABF的外接圆圆心;
(2)过焦点F的直线L与曲线C交于P、Q两点,若|PQ|=2,求所有满足条件的直线L;
(3)对于一般的封闭曲线,曲线上任意两点距离的最大值称为该曲线的“直径”.如圆的“直径”就是通常的直径,椭圆的“直径”就是长轴的长.求该曲线C的“直径”.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0)的准线为l,焦点为F,⊙M的圆心在x轴的正半轴上,且与y轴相切,过原点O作倾斜角为
π3
的直线n,交l于点A,交⊙M于另一点B,且AO=OB=2.
(1)求⊙M和抛物线C的方程;
(2)过l上的动点Q向⊙M作切线,切点为S,T,求证:直线ST恒过一个定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•揭阳二模)如图已知抛物线C:y2=2px(p>0)的准线为l,焦点为F,圆M的圆心在x轴的正半轴上,且与y轴相切.过原点作倾斜角为
π
3
的直线t,交l于点A,交圆M于点B,且|AO|=|OB|=2.
(1)求圆M和抛物线C的方程;
(2)设G,H是抛物线C上异于原点O的两个不同点,且
OG
OH
=0
,求△GOH面积的最小值;
(3)在抛物线C上是否存在两点P,Q关于直线m:y=k(x-1)(k≠0)对称?若存在,求出直线m的方程,若不存在,说明理由.

查看答案和解析>>

同步练习册答案