精英家教网 > 高中数学 > 题目详情

【题目】电脑游戏中,“主角的生存机会往往被预先设定,如某枪战游戏中,“主角被设定生存机会5,每次生存承受射击8(被击中8枪则失去一次生命机会).假设射击过程均为单子弹发射,试为主角耗用生存机会的过程设计一个算法,并画出程序框图.

【答案】见解析

【解析】试题分析:(方法一)主角的所有生存机会共能承受8×5=40枪(第40枪被击中,则生命结束).主角被击中枪数为i,设计程序框图如图甲所示.

(方法二)电脑中预设共承受枪数为40,主角的生存机会以减数计数,设计程序框图如图乙所示.

试题解析:

(方法一)主角的所有生存机会共能承受8×5=40枪(第40枪被击中,则生命结束).主角被击中枪数为i,程序框图如图甲所示.

(方法二)电脑中预设共承受枪数为40,主角的生存机会以减数计数,程序框图如图乙所示.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等式:sin25°+cos235°+sin5°cos35°= ; sin215°+cos245°+sin15°cos45°= ; sin230°+cos260°+sin30°cos60°= ;由此可归纳出对任意角度θ都成立的一个等式,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了普及环保知识,增强学生的环保意识,在全校组织了一次有关环保知识的竞赛.经过初赛、复赛,甲、乙两个代表队(每队3人)进入了决赛,规定每人回答一个问题,答对为本队赢得10分,答错得0分.假设甲队中每人答对的概率均为 ,乙队中3人答对的概率分别为 ,且各人回答正确与否相互之间没有影响,用ξ表示乙队的总得分. (Ⅰ)求ξ的分布列和数学期望;
(Ⅱ)求甲、乙两队总得分之和等于30分且甲队获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某池塘养殖着鲤鱼和鲫鱼,为了估计这两种鱼的数量,养殖者从池塘中捕出这两种鱼各1 000,给每条鱼做上不影响其存活的标记,然后放回池塘,待完全混合后,再每次从池塘中随机地捕出1 000条鱼,记录下其中有记号的鱼的数目,立即放回池塘中.这样的记录做了10,并将记录获取的数据制作成如图所示的茎叶图.

(1)根据茎叶图计算有记号的鲤鱼和鲫鱼数目的平均数,并估计池塘中的鲤鱼和鲫鱼的数量;

(2)为了估计池塘中鱼的总质量,现按照(1)中的比例对100条鱼进行称重,根据称重鱼的质量介于[0,4.5](单位:千克)之间,将测量结果按如下方式分成九组:第一组[0,0.5),第二组[0.5,1),…,第九组[4,4.5].如图是按上述分组方法得到的频率分布直方图的一部分.

估计池塘中鱼的质量在3千克以上(3千克)的条数;

若第三组鱼的条数比第二组多7条、第四组鱼的条数比第三组多7,请将频率分布直方图补充完整;

的条件下估计池塘中鱼的质量的众数及池塘中鱼的总质量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形ABCD的边长为4,∠BAD=60°,AC∩BD=O,将菱形ABCD沿对角线AC折起,得到三棱锥B﹣ACD,点M是棱BC的中点,且DM=2
(1)求证:OM∥平面ABD;
(2)求证:平面DOM⊥平面ABC;
(3)求点B到平面DOM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= + . (I)求f(x)的最大值;
(Ⅱ)若关于x的不等式f(x)≥|k﹣2|有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面是60名男生每分钟脉搏跳动次数的频率分布表.

分组

频数

频率

[51.5,57.5)

4

0.067

0.011

[57.5,63.5)

6

0.1

0.017

[63.5,69.5)

11

0.183

0.031

[69.5,75.5)

20

0.333

0.056

[75.5,81.5)

11

0.183

0.031

[81.5,87.5)

5

0.083

0.014

[87.5,93.5]

3

0.05

0.008

(1)作出其频率分布直方图;

(2)根据直方图的各组中值估计总体平均数;

(3)估计每分钟脉搏跳动次数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人各射击一次,击中目标的概率分别是 .假设两人射击是否击中目标相互之间没有影响;每人各次射击是否击中目标相互之间也没有影响.
(1)求甲射击4次,至少有1次未击中目标的概率;
(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正实数x,y,z满足x+y+z=1, + + =10,则xyz的最大值为

查看答案和解析>>

同步练习册答案