【题目】下面是60名男生每分钟脉搏跳动次数的频率分布表.
分组 | 频数 | 频率 |
|
[51.5,57.5) | 4 | 0.067 | 0.011 |
[57.5,63.5) | 6 | 0.1 | 0.017 |
[63.5,69.5) | 11 | 0.183 | 0.031 |
[69.5,75.5) | 20 | 0.333 | 0.056 |
[75.5,81.5) | 11 | 0.183 | 0.031 |
[81.5,87.5) | 5 | 0.083 | 0.014 |
[87.5,93.5] | 3 | 0.05 | 0.008 |
(1)作出其频率分布直方图;
(2)根据直方图的各组中值估计总体平均数;
(3)估计每分钟脉搏跳动次数的范围.
【答案】(1) 见解析;(2)72.(3)[64,81].
【解析】试题分析:(1) 由频率分布表中的数据,在横轴为数据,纵轴为
,即可得到频率分布直方图;
(2)利用组中值估计总体平均数公式求解即可;
(3)由上述样本数据可求得s=8.78, 每分钟脉搏跳动次数的范围大致为[
-s,
+s]代入数据并取整数即可得[64,81].
试题解析:(1)作出频率分布直方图如图:
![]()
(2)由组中值估计总体平均数为(54.5×4+60.5×6+66.5×11+72.5×20+78.5×11+84.5×5+90.5×3)÷60=72.
(3)由上述样本数据可求得s=8.78,
∴每分钟脉搏跳动次数的范围大致为[
-s,
+s],即[63.22,80.78],取整数即[64,81].
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若函数
在区间
上存在零点,求实数
的取值范围;
(2)当
时,若对任意的
,总存在
,使
成立,求实数
的取值范围;
(3)若
的值域为区间
,是否存在常数
,使区间
的长度为
?若存在,求出
的值;若不存在,请说明理由.(注:区间
的长度为
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】电脑游戏中,“主角”的生存机会往往被预先设定,如某枪战游戏中,“主角”被设定生存机会5次,每次生存承受射击8枪(被击中8枪则失去一次生命机会).假设射击过程均为单子弹发射,试为“主角”耗用生存机会的过程设计一个算法,并画出程序框图.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,n∈N),共有
种取法.在这
种取法中,可以分成两类:一类是取出的m个球全部为白球,共有
种取法;另一类是取出的m个球有m﹣1个白球和1个黑球,共有
种取法.显然
,即有等式:
成立.试根据上述思想化简下列式子:
= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某幼儿园为训练孩子的数字运算能力,在一个盒子里装有标号为1,2,3,4,5的卡片各两张,让孩子从盒子里任取3张卡片,按卡片上的最大数字的9倍计分,每张卡片被取出的可能性都相等,用X表示取出的3张卡片上的最大数字
(1)求取出的3张卡片上的数字互不相同的概率;
(2)求随机变量X的分布列及数学期望;
(3)若孩子取出的卡片的计分超过30分,就得到奖励,求孩子得到奖励的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
+
=1(a>b>0)的离心率为
,过左焦点F且垂直于x轴的弦长为1.
(I)求椭圆C的标准方程;
(Ⅱ)点P(m,0)为椭圆C的长轴上的一个动点,过点P且斜率为
的直线l交椭圆C于A,B两点,问:|PA|2+|PB|2是否为定值?若是,求出这个定值并证明,否则,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数
在某一个周期内的图像时,列表并填入了部分数据,如下表:
| 0 |
|
|
|
|
|
|
|
|
|
|
| 0 | 5 | 0 | -5 | 0 |
(1)求出实数
;
(2)求出函数
的解析式;
(3)将
图像上所有点向左平移
个单位长度,得到
图像,求
的图像离原点
最近的对称中心.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com