精英家教网 > 高中数学 > 题目详情

【题目】从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,n∈N),共有 种取法.在这 种取法中,可以分成两类:一类是取出的m个球全部为白球,共有 种取法;另一类是取出的m个球有m﹣1个白球和1个黑球,共有 种取法.显然 ,即有等式: 成立.试根据上述思想化简下列式子: =

【答案】Cn+km
【解析】解:在Cnm+Ck1Cnm1+Ck2Cnm2+…+CkkCnmk中,

从第一项到最后一项分别表示:

从装有n个白球,k个黑球的袋子里,

取出m个球的所有情况取法总数的和,

故答案应为:从从装有n+k球中取出m个球的不同取法数Cn+km

故答案为:Cn+km

从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,n∈N),共有Cn+1m种取法.在这Cn+1m种取法中,可以分成两类:一类是取出的m个球全部为白球,另一类是,取出1个黑球,m﹣1个白球,则Cnm+Cnm1=Cn+1m根据上述思想,在式子:Cnm+Ck1Cnm1+Ck2Cnm2+…+CkkCnmk中,从第一项到最后一项分别表示:从装有n个白球,k个黑球的袋子里,取出m个球的所有情况取法总数的和,故答案应为:从从装有n+k球中取出m个球的不同取法数,根据排列组合公式,易得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校课题组为了研究学生的数学成绩与学生细心程度的关系,在本校随机调查了100名学生进行研究.研究结果表明:在数学成绩及格的60名学生中有45人比较细心,另15人比较粗心;在数学成绩不及格的40名学生中有10人比较细心,另30人比较粗心.
(1)试根据上述数据完成2×2列联表;

数学成绩及格

数学成绩不及格

合计

比较细心

比较粗心

合计


(2)能否在犯错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系. 参考数据:独立检验随机变量K2的临界值参考表:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某池塘养殖着鲤鱼和鲫鱼,为了估计这两种鱼的数量,养殖者从池塘中捕出这两种鱼各1 000,给每条鱼做上不影响其存活的标记,然后放回池塘,待完全混合后,再每次从池塘中随机地捕出1 000条鱼,记录下其中有记号的鱼的数目,立即放回池塘中.这样的记录做了10,并将记录获取的数据制作成如图所示的茎叶图.

(1)根据茎叶图计算有记号的鲤鱼和鲫鱼数目的平均数,并估计池塘中的鲤鱼和鲫鱼的数量;

(2)为了估计池塘中鱼的总质量,现按照(1)中的比例对100条鱼进行称重,根据称重鱼的质量介于[0,4.5](单位:千克)之间,将测量结果按如下方式分成九组:第一组[0,0.5),第二组[0.5,1),…,第九组[4,4.5].如图是按上述分组方法得到的频率分布直方图的一部分.

估计池塘中鱼的质量在3千克以上(3千克)的条数;

若第三组鱼的条数比第二组多7条、第四组鱼的条数比第三组多7,请将频率分布直方图补充完整;

的条件下估计池塘中鱼的质量的众数及池塘中鱼的总质量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= + . (I)求f(x)的最大值;
(Ⅱ)若关于x的不等式f(x)≥|k﹣2|有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面是60名男生每分钟脉搏跳动次数的频率分布表.

分组

频数

频率

[51.5,57.5)

4

0.067

0.011

[57.5,63.5)

6

0.1

0.017

[63.5,69.5)

11

0.183

0.031

[69.5,75.5)

20

0.333

0.056

[75.5,81.5)

11

0.183

0.031

[81.5,87.5)

5

0.083

0.014

[87.5,93.5]

3

0.05

0.008

(1)作出其频率分布直方图;

(2)根据直方图的各组中值估计总体平均数;

(3)估计每分钟脉搏跳动次数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD=5,PD=8,点E,F分别是PB,DC的中点.
(1)求证:EF∥平面PAD;
(2)求EF与平面PDB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人各射击一次,击中目标的概率分别是 .假设两人射击是否击中目标相互之间没有影响;每人各次射击是否击中目标相互之间也没有影响.
(1)求甲射击4次,至少有1次未击中目标的概率;
(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax﹣lnx﹣a(a∈R).
(1)讨论函数f(x)的单调性;
(2)若a∈(0,+∞),x∈(1,+∞),证明:f(x)<axlnx.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数是奇函数.

(1)求的值;

(2)判断的单调性,并用单调性定义证明;

(3)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案