精英家教网 > 高中数学 > 题目详情

【题目】已知定义在上的函数是奇函数.

(1)求的值;

(2)判断的单调性,并用单调性定义证明;

(3)若对任意的,不等式恒成立,求实数的取值范围.

【答案】12上是减函数(3

【解析】试题分析:1由定义在实数集上的奇函数有列式求解或直接由奇函数的定义得恒等式,由系数相等求解的值;2 可得只需判断;(3由函数的奇偶性和单调性,把给出的不等式转化为含有的一元二次不等式,分离参数后求二次函数的最值即可实数的取值范围.

试题解析:(1是定义在上的奇函数,

2 上是减函数.

证明:设

上是减函数. 

3)不等式

上的减函数,∴

恒成立,

【方法点晴】本题主要考查函数的奇偶性及单调性的应用,以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数恒成立()恒成立(即可);② 数形结合(图象在 上方即可);③ 讨论最值恒成立;④ 讨论参数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,n∈N),共有 种取法.在这 种取法中,可以分成两类:一类是取出的m个球全部为白球,共有 种取法;另一类是取出的m个球有m﹣1个白球和1个黑球,共有 种取法.显然 ,即有等式: 成立.试根据上述思想化简下列式子: =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示在6×6的方格中,有A,B两个格子,则从该方格表中随机抽取一个矩形,该矩形包含格子A但不包含格子B的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(x+1)+loga(3﹣x)(a>0且a≠1),且f(1)=2
(1)求a的值及f(x)的定义域;
(2)若不等式f(x)≤c的恒成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用“五点法”画函数在某一个周期内的图像时,列表并填入了部分数据,如下表:

0

0

5

0

-5

0

1)求出实数

2)求出函数的解析式;

(3)将图像上所有点向左平移个单位长度,得到图像,求的图像离原点最近的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十二生肖,又叫属相,是中国与十二地支相配以人出生年份的十二种动物,包括鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪。已知在甲、乙、丙、丁、戊、己六人中,甲、乙、丙的属相均是龙,丁、戊的属相均是虎,己的属相是猴,现从这六人中随机选出三人,则所选出的三人的属相互不相同的概率等于( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某生产旅游纪念品的工厂,拟在2017年度进行系列促销活动,经市场调查和测算,该纪念品的年销售量 (单位:万件)与年促销费用 (单位:万元)之间满足 成反比例.若不搞促销活动,纪念品的年销售量只有1万件.已知加工厂2017年生产纪念品的固定投资为3万元,没生产1万件纪念品另外需要投资32万元.当工厂把每件纪念品的售价定为“年平均每件生产成本的1.5倍”与“年平均每件所占促销费的一半”之和时,则当年的产量和销量相等.(利润=收入-生产成本-促销费用)
(Ⅰ)请把该工厂2017年的年利润 (单位:万元)表示成促销费 (单位:万元)的函数;
(Ⅱ)试问:当2017年的促销费投入多少万元时,该工程的年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一只小船以的速度由南向北匀速驶过湖面,在离湖面高20米的桥上,一辆汽车由西向东以的速度前进(如图),现在小船在水平面上的点以南的40米处,汽车在桥上点以西的30米处(其中水平面),请画出合适的空间图形并求小船与汽车间的最短距离.(不考虑汽车与小船本身的大小)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 且2Sn=(n+2)an﹣1(n∈N*).
(1)求a1的值;
(2)求数列{an}的通项公式;
(3)设Tn= ,求证:Tn

查看答案和解析>>

同步练习册答案