【题目】已知定义在
上的函数
是奇函数.
(1)求
的值;
(2)判断
的单调性,并用单调性定义证明;
(3)若对任意的
,不等式
恒成立,求实数
的取值范围.
【答案】(1)
(2)
在
上是减函数(3)![]()
【解析】试题分析:(1)由定义在实数集上的奇函数有
列式求解,或直接由奇函数的定义得恒等式,由系数相等求解
的值;(2)设
,
且
,可得
,只需判断
;(3)由函数的奇偶性和单调性,把给出的不等式转化为含有
的一元二次不等式,分离参数后求二次函数的最值,即可实数
的取值范围.
试题解析:(1)∵
是定义在
上的奇函数,
∴
,∴
,∴
.
(2)
,
在
上是减函数.
证明:设
,
且
,
则
,
∵
,∴
,
,
,
∴
,
即
,∴
在
上是减函数.
(3)不等式
![]()
又
是
上的减函数,∴
,
∴
,对
恒成立,
∴
.
【方法点晴】本题主要考查函数的奇偶性及单调性的应用,以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数
恒成立(
可)或
恒成立(
即可);② 数形结合(
图象在
上方即可);③ 讨论最值
或
恒成立;④ 讨论参数.
科目:高中数学 来源: 题型:
【题目】从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,n∈N),共有
种取法.在这
种取法中,可以分成两类:一类是取出的m个球全部为白球,共有
种取法;另一类是取出的m个球有m﹣1个白球和1个黑球,共有
种取法.显然
,即有等式:
成立.试根据上述思想化简下列式子:
= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(x+1)+loga(3﹣x)(a>0且a≠1),且f(1)=2
(1)求a的值及f(x)的定义域;
(2)若不等式f(x)≤c的恒成立,求实数c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数
在某一个周期内的图像时,列表并填入了部分数据,如下表:
| 0 |
|
|
|
|
|
|
|
|
|
|
| 0 | 5 | 0 | -5 | 0 |
(1)求出实数
;
(2)求出函数
的解析式;
(3)将
图像上所有点向左平移
个单位长度,得到
图像,求
的图像离原点
最近的对称中心.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十二生肖,又叫属相,是中国与十二地支相配以人出生年份的十二种动物,包括鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪。已知在甲、乙、丙、丁、戊、己六人中,甲、乙、丙的属相均是龙,丁、戊的属相均是虎,己的属相是猴,现从这六人中随机选出三人,则所选出的三人的属相互不相同的概率等于( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某生产旅游纪念品的工厂,拟在2017年度进行系列促销活动,经市场调查和测算,该纪念品的年销售量
(单位:万件)与年促销费用
(单位:万元)之间满足
于
成反比例.若不搞促销活动,纪念品的年销售量只有1万件.已知加工厂2017年生产纪念品的固定投资为3万元,没生产1万件纪念品另外需要投资32万元.当工厂把每件纪念品的售价定为“年平均每件生产成本的1.5倍”与“年平均每件所占促销费的一半”之和时,则当年的产量和销量相等.(利润=收入-生产成本-促销费用)
(Ⅰ)请把该工厂2017年的年利润
(单位:万元)表示成促销费
(单位:万元)的函数;
(Ⅱ)试问:当2017年的促销费投入多少万元时,该工程的年利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一只小船以
的速度由南向北匀速驶过湖面,在离湖面高20米的桥上,一辆汽车由西向东以
的速度前进(如图),现在小船在水平面上的
点以南的40米处,汽车在桥上
点以西的30米处(其中
水平面),请画出合适的空间图形并求小船与汽车间的最短距离.(不考虑汽车与小船本身的大小).
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn , 且2Sn=(n+2)an﹣1(n∈N*).
(1)求a1的值;
(2)求数列{an}的通项公式;
(3)设Tn=
,求证:Tn<
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com