精英家教网 > 高中数学 > 题目详情

【题目】设数列{an}的前n项和为Sn , 且2Sn=(n+2)an﹣1(n∈N*).
(1)求a1的值;
(2)求数列{an}的通项公式;
(3)设Tn= ,求证:Tn

【答案】
(1)解:数列{an}的前n项和为Sn,且2Sn=(n+2)an﹣1(n∈N*).

令n=1时,2S1=3a1﹣1,解得:a1=1


(2)解:由于:2Sn=(n+2)an﹣1①

所以:2Sn+1=(n+3)an+1﹣1②

②﹣①得:2an+1=(n+3)an+1﹣(n+2)an

整理得: ,则 ,即

,…,

利用叠乘法把上面的(n﹣1)个式子相乘得: =

,当n=1时,a1=1符合上式,

∴数列的通项公式是


(3)证明:∵ ,∴

=2( ),

∴Tn=

=2( …+

=2( )<2( )=

故Tn


【解析】(1)令n=1,能求出a1.(2)由2Sn=(n+2)an﹣1,得2Sn+1=(n+3)an+1﹣1,从而得到 ,利用利用叠乘法得: = ,由此能求出数列的通项公式.(3)推导出 =2( ),由此利用裂项求和法能证明Tn

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数是奇函数.

(1)求的值;

(2)判断的单调性,并用单调性定义证明;

(3)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥PABCD的底面ABCD是边长为1的菱形,∠BCD=60°,ECD的中点,PA⊥底面ABCDPA.

(1)证明:平面PBE⊥平面PAB

(2)求二面角ABEP的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,平面平面,四边形为平行四边形, .

(1)求证: 平面

(2)求到平面的距离;

(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 为不同的直线, 不同的平面,则下列判断正确的是()

A. ,则 B. ,则

C. ,则 D. ,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=﹣4x3+kx,对任意的x∈[﹣1,1],总有f(x)≤1,则实数k的取值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】生产某种产品的年固定成本为250万元,每生产x千件,需要另投入成本为C(x),当年产量不足80千件时,C(x)= +20x(万元),当年产量不小于80千件时,C(x)=51x+ ﹣1450(万元),通过市场分析,每件商品售价为0.05万元时,该商品能全部售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式(利润=销售额﹣成本);
(2)年产量为多少千件时,生产该商品获得的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间上有最大值和最小值 .

(1)求的值;

(2)若不等式上有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数==

(1)求函数的单调递增区间;(只需写出结论即可)

(2)设函数= ,若在区间上有两个不同的零点,求实数的取值范围;

(3)若存在实数,使得对于任意的,都有成立,求实数的最大值.

查看答案和解析>>

同步练习册答案