精英家教网 > 高中数学 > 题目详情

【题目】下列函数中,在其定义域内既是奇函数又是增函数的是(
A.y=x3+x
B.y=﹣
C.y=sinx
D.

【答案】A
【解析】解:根据题意,依次分析选项:

对于A、对于函数f(x)=x3+x,有f(﹣x)=(﹣x)3+(﹣x)=﹣(x3+x)=﹣f(x),为奇函数,

又由其导数f′(x)=3x2+1>0,故函数f(x)为增函数,符合题意,

对于B、函数y=﹣ = ,为反比例函数,在其定义域上不是增函数,不符合题意;

对于C、y=sinx为正弦函数,在其定义域上不是增函数,不符合题意;

对于D、y=( x﹣2x=2x﹣2x,在定义域上为减函数,不符合题意;

故选:A.

【考点精析】利用奇偶性与单调性的综合对题目进行判断即可得到答案,需要熟知奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户,按年龄分组进行访谈,统计结果如表.

组号

年龄

访谈人数

愿意使用

1

[18,28)

4

4

2

[28,38)

9

9

3

[38,48)

16

15

4

[48,58)

15

12

5

[58,68)

6

2

(Ⅰ)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取12人,则各组应分别抽取多少人?
(Ⅱ)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.
(Ⅲ)按以上统计数据填写下面2×2列联表,并判断以48岁为分界点,能否在犯错误不超过1%的前提下认为,是否愿意选择此款“流量包”套餐与人的年龄有关?

年龄不低于48岁的人数

年龄低于48岁的人数

合计

愿意使用的人数

不愿意使用的人数

合计

参考公式: ,其中:n=a+b+c+d.

P(k2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌新款夏装即将上市,为了对夏装进行合理定价,在该地区的三家连锁店各进行了两天试销售,得到如下数据:

连锁店

A店

B店

C店

售价x(元)

80

86

82

88

84

90

销售量y(件)

88

78

85

75

82

66


(1)以三家连锁店分别的平均售价和平均销量为散点,求出售价与销量的回归直线方程
(2)在大量投入市场后,销售量与单价仍然服从(1)中的关系,且该夏装成本价为40元/件,为使该款夏装在销售上获得最大利润,该款夏装的单价应定为多少元(保留整数)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了普及环保知识,增强学生的环保意识,在全校组织了一次有关环保知识的竞赛.经过初赛、复赛,甲、乙两个代表队(每队3人)进入了决赛,规定每人回答一个问题,答对为本队赢得10分,答错得0分.假设甲队中每人答对的概率均为 ,乙队中3人答对的概率分别为 ,且各人回答正确与否相互之间没有影响,用ξ表示乙队的总得分. (Ⅰ)求ξ的分布列和数学期望;
(Ⅱ)求甲、乙两队总得分之和等于30分且甲队获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数y=f(x)对任意的x、y∈R,满足条件:f(x+y)=f(x)+f(y)﹣1,且当x>0时,f(x)>1.
(1)求f(0)的值;
(2)证明:函数f(x)是R上的单调增函数;
(3)解关于t的不等式f(2t2﹣t)<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某池塘养殖着鲤鱼和鲫鱼,为了估计这两种鱼的数量,养殖者从池塘中捕出这两种鱼各1 000,给每条鱼做上不影响其存活的标记,然后放回池塘,待完全混合后,再每次从池塘中随机地捕出1 000条鱼,记录下其中有记号的鱼的数目,立即放回池塘中.这样的记录做了10,并将记录获取的数据制作成如图所示的茎叶图.

(1)根据茎叶图计算有记号的鲤鱼和鲫鱼数目的平均数,并估计池塘中的鲤鱼和鲫鱼的数量;

(2)为了估计池塘中鱼的总质量,现按照(1)中的比例对100条鱼进行称重,根据称重鱼的质量介于[0,4.5](单位:千克)之间,将测量结果按如下方式分成九组:第一组[0,0.5),第二组[0.5,1),…,第九组[4,4.5].如图是按上述分组方法得到的频率分布直方图的一部分.

估计池塘中鱼的质量在3千克以上(3千克)的条数;

若第三组鱼的条数比第二组多7条、第四组鱼的条数比第三组多7,请将频率分布直方图补充完整;

的条件下估计池塘中鱼的质量的众数及池塘中鱼的总质量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形ABCD的边长为4,∠BAD=60°,AC∩BD=O,将菱形ABCD沿对角线AC折起,得到三棱锥B﹣ACD,点M是棱BC的中点,且DM=2
(1)求证:OM∥平面ABD;
(2)求证:平面DOM⊥平面ABC;
(3)求点B到平面DOM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面是60名男生每分钟脉搏跳动次数的频率分布表.

分组

频数

频率

[51.5,57.5)

4

0.067

0.011

[57.5,63.5)

6

0.1

0.017

[63.5,69.5)

11

0.183

0.031

[69.5,75.5)

20

0.333

0.056

[75.5,81.5)

11

0.183

0.031

[81.5,87.5)

5

0.083

0.014

[87.5,93.5]

3

0.05

0.008

(1)作出其频率分布直方图;

(2)根据直方图的各组中值估计总体平均数;

(3)估计每分钟脉搏跳动次数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正四面体P﹣ABC体积为V,现内部取一点S,则 的概率为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案