精英家教网 > 高中数学 > 题目详情
已知动点P与双曲线x2-y2=1的两个焦点F1,F2的距离之和为定值,且cos∠F1PF2的最小值为-
13

(1)求动点P的轨迹方程;
(2)设M(0,-1),若斜率为k(k≠0)的直线l与P点的轨迹交于不同的两点A、B,若要使|MA|=|MB|,试求k的取值范围.
分析:(1)根据椭圆定义可知,所求动点P的轨迹为以F1,F2为焦点的椭圆,再结合余弦定理求出椭圆中的a,b的值即可.
(2)设出A,B点的坐标,以及直线AB的方程,将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用斜率公式及根的判别式即可求得k的取值范围,从而解决问题.
解答:解:(1)∵x2-y2=1,∴c=
2
.设|PF1|+|PF2|=2a(常数a>0),2a>2c=2
2
,∴a>
2

由余弦定理有cos∠F1PF2=
|PF1|2+|PF2|2-|F1F2|2
2|PF1||PF2|
=
(|PF1|+|PF2|)2-2|PF1||PF2|-|F1F2|2
2|PF1||PF2|
=
2a2-4
|PF1||PF2|
-1
∵|PF1||PF2|≤(
|PF1|+|PF2|
2
2=a2,∴当且仅当|PF1|=|PF2|时,|PF1||PF2|取得最大值a2
此时cos∠F1PF2取得最小值
2a2-4
a2
-1,由题意
2a2-4
a2
-1=-
1
3
,解得a2=3,∴b2=a2-c2=3-2=1
①②
∴P点的轨迹方程为
x2
3
+y2=1.
(2)设l:y=kx+m(k≠0),则由,
x2
3
+y2=1
y=kx+m
将②代入①得:(1+3k2)x2+6kmx+3(m2-1)=0  (*)
设A(x1,y1),B(x2,y2),则AB中点Q(x0,y0)的坐标满足:x0=
x1+x2
2
=
-3km
1+3k2
y0=kx0+m=
m
1+3k2

即Q(-
3km
1+3k2
m
1+3k2
)∵|MA|=|MB|,∴M在AB的中垂线上,
∴klkAQ=k•
m
1+3k2
-
3km
1+3k2
=-1,解得m=
1+3k2
2
 …③又由于(*)式有两个实数根,知△>0,
即 (6km)2-4(1+3k2)[3(m2-1)]=12(1+3k2-m2)>0  ④,将③代入④得
12[1+3k2-(
1+3k2
2
2]>0,解得-1<k<1,由k≠0,∴k的取值范围是k∈(-1,0)∪(0,1).
点评:本体考查了定义法求轨迹方程,以及直线与圆位置关系的应用.关键是看清题中给出的条件,灵活运用韦达定理进行求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知动点P的轨迹方程为:
x2
4
-
y2
5
=1(x>2),O是坐标原点.
①若直线x-my-3=0截动点P的轨迹所得弦长为5,求实数m的值;
②设过P的轨迹上的点P的直线与该双曲线的两渐近线分别交于点P1、P2,且点P分有向线段
P1P2
所成的比为λ(λ>0),当λ∈[
3
4
3
2
]时,求|
OP1
|•|
OP2
|的最值.

查看答案和解析>>

科目:高中数学 来源:学习周报 数学 人教课标高二版(A选修1-1) 2009-2010学年 第18期 总第174期 人教课标版(A选修1-1) 题型:044

已知双曲线C以y=0为渐近线,且过点A(3,2).

(1)求双曲线C的标准方程;

(2)已知动点P与双曲线C的两个焦点所连线段长的和为6,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:学习周报 数学 人教课标版高二(A选修2-1) 2009-2010学年 第18期 总第174期 人教课标版(A选修2-1) 题型:044

已知双曲线C以y=0为渐近线,且过点A(3,2).

(1)求双曲线C的标准方程;

(2)已知动点P与双曲线C的两个焦点所连线段长的和为6,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设P(a,b)(b≠0)是平面直角坐标系xOy中的点,l是经过原点与点(1,b)的直线,记Q是直线l与抛物线x2=2pyp≠0)的异于原点的交点

⑴.已知a=1,b=2,p=2,求点Q的坐标。

⑵.已知点P(a,b)(ab≠0)在椭圆+y2=1上,p=,求证:点Q落在双曲线4x2-4y2=1上。

⑶.已知动点P(a,b)满足ab≠0,p=,若点Q始终落在一条关于x轴对称的抛物线上,试问动点P的轨迹落在哪种二次曲线上,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

(上海卷理20)设P(a,b)(b≠0)是平面直角坐标系xOy中的点,l是经过原点与点(1,b)的直线,记Q是直线l与抛物线x2=2pyp≠0)的异于原点的交点

⑴已知a=1,b=2,p=2,求点Q的坐标.

⑵已知点P(a,b)(ab≠0)在椭圆+y2=1上,p=,求证:点Q落在双曲线4x2-4y2=1上.

⑶已知动点P(a,b)满足ab≠0,p=,若点Q始终落在一条关于x轴对称的抛物线上,试问动点P的轨迹落在哪种二次曲线上,并说明理由.

查看答案和解析>>

同步练习册答案