精英家教网 > 高中数学 > 题目详情
已知函数在区间上恰有一个极值点,则实数的取值范围是                

试题分析:首先利用函数的导数与极值的关系求出的值,由于函数在区间上恰有一个极值点,所以,故可求得,.
点评:考查利用导数研究函数的极值问题,体现了数形结合和转化的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知是定义在上的非负可导函数,且满足.对任意正数,若,则必有(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.(1)求函数的单调区间;
(2)设函数.若至少存在一个,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知函数处有极小值
(1)求函数的解析式;
(2)若函数只有一个零点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
,点P(,0)是函数的图象的一个公共点,两函数的图象在点P处有相同的切线.
(1)用表示a,b,c;
(2)若函数在(-1,3)上单调递减,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)试用含的代数式表示
(Ⅱ)求的单调区间;
(Ⅲ)令,设函数处取得极值,记点,证明:线段与曲线存在异于的公共点;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若在 的展开式中,第4项是常数项,则     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,(为自然对数的底数)。
(1)当时,求函数在区间上的最大值和最小值;
(2)若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在R上的奇函数,设其导函数,当时,恒有,则满足的实数的取值范围是(  )
A.(-1,2)B.C.D.(-2,1)

查看答案和解析>>

同步练习册答案