试题分析:(1)函数的定义域为
,
.设
,
①当
时,
,
在
上恒成立,则
在
上恒成立,此时
在
上单调递减.
②当
时,(I)由
得
.
当
时,
恒成立,
在
上单调递增. 当
时,
恒成立,
在
上单调递减.
(II)由
得
或
;.当
时,开口向下,
在
上恒成立,则
在
上恒成立,此时
在
上单调递减.
当
,开口向上,
在
上恒成立,则
在
上恒成立,
此时
在
上单调递增.
(III)由
得
若
,开口向上,
,且
,
,
都在
上. 由
,即
,得
或
;
由
,即
,得
.
所以函数
的单调递增区间为
和
,
单调递减区间为
.
当
时,抛物线开口向下,
在
恒成立,即
在(0,+
恒成立,所以
在
单调递减
综上所述:
其中
(2)因为存在一个
使得
,
则
,等价于
.令
,等价于“当
时,
”.
对
求导,得
. 因为
,由
,
所以
在
上单调递增,在
上单调递减.
由于
,所以
,因此
.
点评:近几年新课标高考对于函数与导数这一综合问题的命制,一般以有理函数与半超越(指数、对数)函数的组合复合且含有参量的函数为背景载体,解题时要注意对数式对函数定义域的隐蔽,这类问题重点考查函数单调性、导数运算、不等式方程的求解等基本知识,注重数学思想(分类与整合、数与形的结合)方法(分析法、综合法、反证法)的运用.把数学运算的“力量”与数学思维的“技巧”完美结合