精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
,点P(,0)是函数的图象的一个公共点,两函数的图象在点P处有相同的切线.
(1)用表示a,b,c;
(2)若函数在(-1,3)上单调递减,求的取值范围.
(1)(2)

试题分析:(I)因为函数的图象都过点(,0),所以
.因为所以. ---2分
又因为在点(,0)处有相同的切线,所以
   --------4分
代入上式得 因此---6分
(II).---7分
时,函数单调递减.
,若;若 -------9分
由题意,函数在(-1,3)上单调递减,则
所以---11分
所以的取值范围为 ----12分
点评:利用导数求函数的单调区间,实质上就是求导数>0或导数<0的解集,这样问题就转化为了解不等式,尤其是解含参不等式更为常见。此题是导数中的典型题型,我们要熟练掌握。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
已知函数f(x)=lnx+
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设mR,对任意的a∈(-l,1),总存在xo∈[1,e],使得不等式ma - (xo)<0成立,求实数m的取值范围;
(Ⅲ)证明:ln2 l+ 1n22,+…+ln2 n>∈N*).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的单调递增区间是   

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的单调递增区间是            

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 
(1)若上是增函数,求实数的取值范围;
(2)若的极值点,求上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知函数
(1)当时,判断在定义域上的单调性;
(2)求上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数在区间上恰有一个极值点,则实数的取值范围是                

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)在五棱锥,,,
,,
(1)求证:平面
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知函数在(0,1)上是增函数.(1)求的取值范围;
(2)设),试求函数的最小值.

查看答案和解析>>

同步练习册答案