精英家教网 > 高中数学 > 题目详情
(本题满分14分)
已知函数f(x)=lnx+
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设mR,对任意的a∈(-l,1),总存在xo∈[1,e],使得不等式ma - (xo)<0成立,求实数m的取值范围;
(Ⅲ)证明:ln2 l+ 1n22,+…+ln2 n>∈N*).
(Ⅰ)函数的单调递减区间是.
(Ⅱ)的取值范围是.
(Ⅲ)见解析。

试题分析:(Ⅰ).
,得,因此函数的单调递增区间是.
,得,因此函数的单调递减区间是.…………(4分)
(Ⅱ)依题意,.
由(Ⅰ)知,上是增函数,
.
,即对于任意的恒成立.
解得.
所以,的取值范围是.   …………………………(8分)
(Ⅲ)由(Ⅰ)
.
.
.
又,


.
.
由柯西不等式,.
..     ……………………(14分)
点评:较难题,利用导数求函数单调区间的方法,解题时注意函数的定义域,避免出错
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知函数的图象是连续不断的曲线,且有如下的对应值表

1
2
3
4
5
6

124.4
35
-74
14.5
-56.7
-123.6
  则函数在区间[1,6]上的零点至少有(   )
A、2个            B、3个            C、4个           D、5个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(15分)已知函数.
(1)若的切线,函数处取得极值1,求的值;
证明:
(3)若,且函数上单调递增,
求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx-.
(1)当时,判断f(x)在定义域上的单调性;
(2)若f(x)在[1,e]上的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
,点P(,0)是函数的图象的一个公共点,两函数的图象在点P处有相同的切线.
(1)用表示a,b,c;
(2)若函数在(-1,3)上单调递减,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若在 的展开式中,第4项是常数项,则     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,(为自然对数的底数)。
(1)当时,求函数在区间上的最大值和最小值;
(2)若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知函数.
(1)当时,求证:函数上单调递增;
(2)若函数有三个零点,求的值;
(3)若存在,使得,试求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知函数=.
(1)求函数在区间上的值域;
(2)是否存在实数,对任意给定的,在区间上都存在两个不同的,使得成立.若存在,求出的取值范围;若不存在,请说明理由.
(3)给出如下定义:对于函数图象上任意不同的两点,如果对于函数图象上的点(其中总能使得成立,则称函数具备性质“”,试判断函数是不是具备性质“”,并说明理由.

查看答案和解析>>

同步练习册答案