精英家教网 > 高中数学 > 题目详情
(本小题满分14分)已知函数=.
(1)求函数在区间上的值域;
(2)是否存在实数,对任意给定的,在区间上都存在两个不同的,使得成立.若存在,求出的取值范围;若不存在,请说明理由.
(3)给出如下定义:对于函数图象上任意不同的两点,如果对于函数图象上的点(其中总能使得成立,则称函数具备性质“”,试判断函数是不是具备性质“”,并说明理由.
(1)值域为 .(2)满足条件的不存在. (3)函数不具备性质“”.
本试题主要是考查了导数在研究函数中的运用。
(1)因为,然后分析导数的正负,然后判定单调性得到值域。
(2)令,则由(1)可得,原问题等价于:对任意的上总有两个不同的实根,故不可能是单调函数,对于参数a讨论得到结论。
(3)结合导数的几何意义得到结论。
(1),当时,时, 
在区间上单调递增,在区间上单调递减,且
 的值域为 .          ………………………….3分
(2)令,则由(1)可得,原问题等价于:对任意的上总有两个不同的实根,故不可能是单调函数  ……5分
   
时, 在区间上递减,不合题意 ;
时, ,在区间上单调递增,不合题意;
时, ,在区间上单调递减,不合题意;
时, 在区间上单调递减; 在区间上单递增,由上可得,此时必有的最小值小于等于0且的最大值大于等于1, 而由可得,则.
综上,满足条件的不存在.……………………………………………8分
(3)设函数具备性质“”,即在点处地切线斜率等于,不妨设,则,而在点处的切线斜率为,故有……..10分
,令,则上式化为
,则由可得上单调递增,故,即方程无解,所以函数不具备性质“”.……..14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
已知函数f(x)=lnx+
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设mR,对任意的a∈(-l,1),总存在xo∈[1,e],使得不等式ma - (xo)<0成立,求实数m的取值范围;
(Ⅲ)证明:ln2 l+ 1n22,+…+ln2 n>∈N*).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)设函数.
(Ⅰ)讨论的单调性;
(Ⅱ)已知,若函数的图象总在直线的下方,求的取值范围;
(Ⅲ)记为函数的导函数.若,试问:在区间上是否存在)个正数,使得成立?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 
(1)若上是增函数,求实数的取值范围;
(2)若的极值点,求上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分) 已知函数
(1)当时,求曲线在点处的切线方程;
(2)当时,判断方程实根个数.
(3)若时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设函数
(1)求函数的单调递增区间;
(2)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知函数在(0,1)上是增函数.(1)求的取值范围;
(2)设),试求函数的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分) 已知函数处取得极小值.
(1)求m的值。
(2)若上是增函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)设.如果对任意,求的取值范围.

查看答案和解析>>

同步练习册答案