精英家教网 > 高中数学 > 题目详情
已知直线l1过A(0,1),与直线x=-2相交于点P(-2,y0),直线l2过B(0,-1)与x相交于Q(x0,0),x0、y0满足y0-
x0
2
=1
,l1∩l2=M.
(Ⅰ)求直线l1的方程(方程中含有y0);
(Ⅱ)求点M的轨迹C的方程;
(Ⅲ)过C左焦点F1的直线l与C相交于点A、B,F2为C的右焦点,求△ABF2面积最大时点F2到直线l的距离.
(Ⅰ)∵直线l1过A(0,1),与直线x=-2相交于点P(-2,y0),
∴直线l1的斜率k为k=
1-y0
2

∴直线l1的方程为y=
1-y0
2
x+1
.…(3分)
(Ⅱ)当x0=0时,直线l2就是y轴,M(0,1).
当x0≠0时,直线l2方程为y=
1
x0
x-1
.(1)
y0-
x0
2
=1
,∴k=-
x0
4

∴直线l1的方程可变为y=-
x0
4
x+1
.(2)
由(1)(2)得
x2
4
+y2=1

∵P点在直线x=-2上,
∴l2不经过B(0,-1),即B(0,-1)不在轨迹C上,
∴轨迹C的方程为
x2
4
+y2=1
(y≠-1).…(7分)
(Ⅲ)由(Ⅱ)得F1(-
3
,0),F2(
3
,0)
,根据题意直线l与x轴不能重合,
∴可设l的方程为x=ky-
3
,又设A(x1,y1),B(x2,y2).
x=ky-
3
代入
x2
4
+y2=1
化简并整理得(k2+4)y2-2
3
ky-1=0

y1+y2=
2
3
k
k2+4
y1y2=-
1
k2+4

|y1-y2|=
(y1+y2)2-4y1y2
=
(
2
3
k
k2+4
)
2
+
4
k2+4
=4
1
(k2+1)+
9
k2+1
+6

∴△ABF2面积S=
1
2
|F1F2|•|y1-y2|=4
3
1
(k2+1)+
9
k2+1
+6
4
3
1
2
(k2+1)•
9
k2+1
+6
=2

当且仅当k2+1=
9
k2+1
,即k=±
2
时等号成立.
∴△ABF2面积最大时,l的方程为
2
y+
3
=0

F2(
3
,0)
到直线l的距离d为d=
|
3
+
3
|
3
=2
.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知直线l:y=2x与抛物线C:y=
1
4
x2
交于A(xA,yA)、O(0,0)两点,过点O与直线l垂直的直线交抛物线C于点B(xB,yB).如图所示.
(1)求抛物线C的焦点坐标;
(2)求经过A、B两点的直线与y轴交点M的坐标;
(3)过抛物线y=
1
4
x2
的顶点任意作两条互相垂直的直线,过这两条直线与抛物线的交点A、B的直线AB是否恒过定点,如果是,指出此定点,并证明你的结论;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知m>1,直线l:x-my-
m2
2
=0,椭圆C:
x2
m2
+y2=1,F1、F2分别为椭圆C的左、右焦点.
(Ⅰ)当直线l过右焦点F2时,求直线l的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,△AF1F2,△BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知方程ax2+by2=ab和ax+by+c=0(其中ab≠0,a≠b,c>0),它们所表示的曲线可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,圆O的半径为定长r,A是圆O外一定点,P是圆上任意一点.线段AP的垂直平分线l和直线OP相交于点Q,当点P在圆上运动时,点Q的轨迹是(  )
A.椭圆B.圆C.双曲线D.直线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的渐近线方程为y=±
3
x
,O为坐标原点,点M(
5
3
)
在双曲线上.
(1)求双曲线C的方程;
(2)若直线l与双曲线交于P,Q两点,且
OP
OQ
,求|OP|2+|OQ|2的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的一个焦点F且垂直于x轴的直线交椭圆于点(-1,
2
2
)

(1)求椭圆C的方程;
(2)椭圆C的左、右顶点A、B,左、右焦点分别为F1,F2,P为以F1F2为直径的圆上异于F1,F2的动点,问
AP
BP
是否为定值,若是求出定值,不是说明理由?
(3)是否存在过点Q(-2,0)的直线l与椭圆C交于两点M、N,使得|FD|=
1
2
|MN|
(其中D为弦MN的中点)?若存在,求出直线l的方程:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线C与椭圆
x2
8
+
y2
4
=1
有相同的焦点,直线y=
3
x
为C的一条渐近线.
(1)求双曲线C的方程;
(2)过点P(0,4)的直线l,交双曲线C于A、B两点,交x轴于Q点(Q点与C的顶点不重合),当
PQ
=λ1
QA
=λ2
QB
,且λ1+λ2=-
8
3
时,求Q点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆心为F1的圆的方程为(x+2)2+y2=32,F2(2,0),C是圆F1上的动点,F2C的垂直平分线交F1C于M.
(1)求动点M的轨迹方程;
(2)设N(0,2),过点P(-1,-2)作直线l,交M的轨迹于不同于N的A,B两点,直线NA,NB的斜率分别为k1,k2,证明:k1+k2为定值.

查看答案和解析>>

同步练习册答案