精英家教网 > 高中数学 > 题目详情
log2(x2-5x-2)=2.
考点:函数的零点与方程根的关系,对数的运算性质
专题:函数的性质及应用
分析:由log2(x2-5x-2)=2,得x2-5x-2=4,由此能求出x.
解答: 解:∵log2(x2-5x-2)=2,
∴x2-5x-2=4,
解得x=-1或x=6,
经检验,得x=-1或x=6都是原方程的解.
点评:本题考查对数方程的求解,是基础题,解题时要注意对数性质和运算法则的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a
x
+lnx(a>0).
(1)判断函数f(x)在(0,e]上的单调性(e为自然对数的底);
(2)记f′(x)为f(x)的导函数,若函数g(x)=x3-
a
2
x2+x2f′(x)在区间(
1
2
,3)上存在极值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx+
m
x
,m∈R.
(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;
(Ⅱ)讨论函数g(x)=f′(x)-
x
3
零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}的前n项和为Sn,若S5=25,且S1,S2,S4成等比数列.
(1)求数列{an}的通项公式;
(2)bn=
1
Sn
(n∈N*),证明:对一切正整数n,有b1+b2+…+bn
7
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,f(x)=
x
x-a
,g(x)=
xex
x-a
,求曲线y=f(x)与y=g(x)在x=0处的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面内,设A,B,O为定点,P为动点,则下列集合分别表示什么图形:
(1){P|PA=PB};
(2){P|PO=1}.

查看答案和解析>>

科目:高中数学 来源: 题型:

某地区重视环境保护,绿色植被面积呈上升趋势,经过调查,现有森林面积为10000m2,每年增长10%,经过x年,森林面积为ym2
(1)写出x,y之间的函数关系式;
(2)求出经过10年后森林的面积.(可借助于计算器)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x丨x2-3x+2=0},B={x丨a-1<x<2a+3},A∩B=A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx-ax+
1-a
x
-1.
(1)当a=1时,求曲线f(x)在x=1处的切线方程;
(2)当a=
1
3
时,求函数f(x)的单调区间;
(3)在(2)的条件下,设函数g(x)=x2-2bx-
5
12
,若对于?x1∈[1,2],?x1∈[0,1],使f(x1)≥g(x2)成立,求实数b的取值范围.

查看答案和解析>>

同步练习册答案