精英家教网 > 高中数学 > 题目详情
已知矩形ABCD中,AB=2,AD=5,E,F分别在AD,BC上且AE=1,BF=3,将四边形AEFB沿EF折起,使点B在平面CDEF上的射影H在直线DE上.

(1)求证:AD平面BFC;
(2)求二面角A-DE-F的平面角的大小.
(1)证明:∵AEBF,DEFC,
∴AE平面BFC,DE平面BFC,AE∩DE=E,
∴平面AED平面BFC
∴AD平面BFC.…(4分)
(2)由(I)可知平面AED平面BFC
∴二面角A-DE-F与二面角B-FC-E互补…(6分)
过B作BK⊥EF于K,连结HK,
∵BH⊥平面CDEF,∴BH⊥EF,EF⊥平面BKH,∴EF⊥KH,
∵∠BFE=45°,∠BKF=90°,BF=3,
∴FK=
3
2
2

∵EF=2
2

∴EK=
2
2

又∵∠KEH=45°,
∠HKE=90°,
∴EH=1,
BE=
5
,∴BH=2…(8分)
过H作HL⊥CF,
交CF延长线于点L,连结BL,
∵BH⊥平面CDEF,
∴BH⊥CF,
∴CF⊥平面BHL,∴CF⊥BL,
∴∠BLH为二面角B-CF-E的平面角,…(10分)
∵HL=2=BH,∴∠BLH=45°,
∴二面角A-DE-F的大小为135°.…(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知正三棱柱ABC-A1B1C1的底面边长为2,高为1,过顶点A作一平面α与侧面BCC1B1交于EF,且EFBC.若平面α与底面ABC所成二面角的大小为x(0<x≤
π
6
)
,四边形BCEF面积为y,则函数y=f(x)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在四棱锥P-ABCD中,四边形ABCD为菱形,∠ABC=60°,AB=2,△PCB为正三角形,且平面PCB⊥平面ABCD,M,N分别为BC,PD的中点.
(1)求证:MN面APB;
(2)求二面角B-NC-P的余弦值;
(3)求四棱锥P-ABCD被截面MNC分成的上下两部分体积之比.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为2的正方形ABCD中,点E、F分别是边AB、BC上的点,将△AED、△DCF分别沿DE、DF折起,使A、C两点重合于点A′.
(1)△A′EF恰好是正三角形且Q是A′F的中点,求证:EQ⊥平面A′FD
(2)当E、F分别是AB、BC的中点时,求二面角A′-EF-D的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体ABCD-A1B1C1D1中,AB=2BC=2BB1,沿平面C1BD把这个长方体截成两个几何体:
(Ⅰ)设几何体(1)、几何体(2)的体积分为是V1、V2,求V1与V2的比值;
(Ⅱ)在几何体(2)中,求二面角P-QR-C的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线和平面,则的一个必要条件是(    )
A.B.
C.D.成等角

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是(  ).
A.AC⊥SB
B.AB∥平面SCD
C.SA与平面SBD所成的角等于SC与平面SBD所成的角
D.AB与SC所成的角等于DC与SA所成的角

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两条互不重合的直线m,n,两个不同的平面α,β,下列命题中正确的是(  )
A.若m∥α,n∥β,且m∥n,则α∥β
B.若m⊥α,n∥β,且m⊥n,则α⊥β
C.若m⊥α,n∥β,且m∥n,则α∥β
D.若m⊥α,n⊥β,且m⊥n,则α⊥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正方体ABCD-A′B′C′D′的棱长为4,动点E、F在棱AB上,且EF=2,动点Q在棱D′C′上,则三棱锥A′-EFQ的体积(  )
A.与点E、F的位置有关
B.与点Q的位置有关
C.与点E、F、Q的位置都有关
D.与点E、F、Q的位置均无关,是定值

查看答案和解析>>

同步练习册答案