精英家教网 > 高中数学 > 题目详情
如图所示,在四棱锥P-ABCD中,四边形ABCD为菱形,∠ABC=60°,AB=2,△PCB为正三角形,且平面PCB⊥平面ABCD,M,N分别为BC,PD的中点.
(1)求证:MN面APB;
(2)求二面角B-NC-P的余弦值;
(3)求四棱锥P-ABCD被截面MNC分成的上下两部分体积之比.
(1)证明:取AD中点O,连接MO,NO,
∵M,N分别为DE,PB的中点,
∴ONPA,ON面PAB
又∵四边形ABCD为平行四边形,
∴OMAB,∵OM在平面PAB外,AB?平面PAB,
∴OM面PAB,
∵面MON面PAB,∴MN面PAB.(3分)
(2)建立空间直角坐标系如图,
由题意知:P(0,0,
3
),A(
3
,0,0),B(0,-1,0),
C(0,1,0),D(
3
,2,0)

∵N为PD中点,∴N(
3
2
,1,
3
2
)
,(4分)
PN
=(
3
2
,1,-
3
2
),
PC
=(0,1,-
3
)

BN
=(
3
2
,2,
3
2
)
BC
=(0,2,0),
令平面PNC的法向量
n
=(x,y,z)

n
PN
=0,
n
PC
=0

3
2
x+y-
3
2
z=0
y-
3
z=0
,∴
n
=(-1,
3
,1)

设平面BNC的法向量
m
=(
x1
y1z1)

m
BN
=0,
m
BC
=0

3
2
x1+2y1+
3
2
z1=0
2y1=0
,∴
m
=(1,0,-1)
,(6分)
∴cos<
m
n
>=
-1+0-1
5
2
=-
10
5

∵二面角B-NC-P的平面角为锐角,
∴二面角B-NC-P的余弦值为
10
5
.(8分)
(3)∵
MP
=(0,0,
3
),平面MNC的法向量为
m
=(1,0,-1)

∴点P到平面MNC的距离d=|
MP
m
m
|=|
-
3
2
|=
6
2

设PA中点为E,则NE=1,BC=2,
BC
=(0,2,0),
CN
=(
3
2
,0,
3
2
)

BC
CN
=0
,|
CN
|=
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知ABCD是矩形,PA⊥平面ABCD,M,N分别是AB,PC的中点,PA=2,PD=AB,且平面MND⊥平面PCD.
(1)求证:MN⊥AB;
(2)求二面角P-CD-A的大小;
(3)求三棱锥D-AMN的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在边长为2的正方形ABCD中,点E是AB的中点,点F是BC的中点,将△AED,△CDF分别沿DE,DF折起,使A,C两点重合于A′.

(1)求证:A′D⊥EF;
(2)求二面角A′-EF-D的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,P是二面角α-AB-β棱AB上的一点,分别在α,β上引射线PM,PN,如果∠BPM=∠BPN=45°,∠MPN=60°,那么二面角α-AB-β的大小是 ______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知梯形ABCD中,ADBC,∠ABC=∠BAD=
π
2
,AB=BC=2AD=4,E、F分别是AB、CD上的点,EFBC,AE=x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).
(1)当x=2时,求证:BD⊥EG;
(2)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3)当f(x)取得最大值时,求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知在三棱锥S-ABC中,底面是边长为4的正三角形,侧面SAC⊥底面ABC,M,N分别是AB,SB的中点,SA=SC=2
3

(1)求证AC⊥SB
(2)求二面角N-CM-B的大小
(3)求点B到面CMN的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个四棱锥P一ABCD的正视图是边长为2的正方形及其一条对角线,侧视图和俯视图全全等的等腰直角三角形,直角边长为2,直观图如图.
(1)求四棱锥P一ABCD的体积:
(2)求二面角C-PB-A大小;
(3)M为棱PB上的点,当PM长为何值时,CM⊥PA?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知矩形ABCD中,AB=2,AD=5,E,F分别在AD,BC上且AE=1,BF=3,将四边形AEFB沿EF折起,使点B在平面CDEF上的射影H在直线DE上.

(1)求证:AD平面BFC;
(2)求二面角A-DE-F的平面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的是(  )
A.PB⊥AD
B.平面PAB⊥平面PBC
C.直线BC∥平面PAE
D.直线PD与平面ABC所成的角为45°

查看答案和解析>>

同步练习册答案