精英家教网 > 高中数学 > 题目详情
计算下列各式:
(Ⅰ)(lg2)2+lg5•lg20-1;
(Ⅱ) (
32
×
3
)6+(
2
2
)
4
3
-4(
16
49
)-
1
2
-
42
×80.25-(-2005)0
分析:(Ⅰ)利用对数的运算性质,把(lg2)2+lg5•lg20-1等价转化为lg22+(1-lg2)(1+lg2)-1,由此能够求出结果.
(Ⅱ)利用有理数指数幂的运算性质,把 (
32
×
3
)6+(
2
2
)
4
3
-4(
16
49
)-
1
2
-
42
×80.25-(-2005)0
等价转化(2
1
3
×3
1
2
)6+(2
1
2
×2
1
4
)
4
3
-4×
7
4
-2
1
4
×2
3
4
-1
,由此能求出结果.
解答:解:(Ⅰ)(lg2)2+lg5•lg20-1
=lg22+(1-lg2)(1+lg2)-1
=lg22+1-lg22-1=0.
(Ⅱ) (
32
×
3
)6+(
2
2
)
4
3
-4(
16
49
)-
1
2
-
42
×80.25-(-2005)0

=(2
1
3
×3
1
2
)6+(2
1
2
×2
1
4
)
4
3
-4×
7
4
-2
1
4
×2
3
4
-1

=22×33+2-7-2-1
=100.
点评:本题考查对数的运算性质和有理数指数幂的运算性质,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算下列各式:
(1)(2
1
4
)
1
2
-(-9.6)0-(3
3
8
)-
2
3
+(1.5)-2

(2)log3
427
3
+lg25+lg4+7log72

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式:
(1)
4x
1
4
(-3x
1
4
y-
1
3
)
-6x-
1
2
y-
2
3

(2)2log525-3log264.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式的值.
(1)lg12.5-lg
5
8
+lg
1
2

(2)2log510+log50.25;
(3)2log32-log3
32
9
+log38-3.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式:
(1)2log32-log3
32
9
+log38-52log53

(2)
8n+1(
1
2
)
2n+1
4n8-2

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式的值:
(1)(0.0081) -
1
4
-[3×(
7
8
0]-1•[81-0.25+(3
3
8
 -
1
3
] -
1
2
-10×0.027 
1
3

(2)
(1-log63)2+log62•log618
log64

查看答案和解析>>

同步练习册答案