精英家教网 > 高中数学 > 题目详情
3.数列{an}的首项a1=1,{bn}为等比数列且bn=$\frac{{a}_{n+1}}{{a}_{n}}$,若b50b51=2016${\;}^{\frac{1}{50}}$,则a101=(  )
A.2015B.4030C.2016D.4032

分析 由已知结合bn=$\frac{{a}_{n+1}}{{a}_{n}}$,得到a101=b1b2…b100,结合b50b51=2016${\;}^{\frac{1}{50}}$,及等比数列的性质求得a101

解答 解:由bn=$\frac{{a}_{n+1}}{{a}_{n}}$,且a1=1,得b1=$\frac{{a}_{2}}{{a}_{1}}={a}_{2}$.
b2=$\frac{{a}_{3}}{{a}_{2}}$,a3=a2b2=b1b2
b3=$\frac{{a}_{4}}{{a}_{3}}$,a4=a3b3=b1b2b3

an=b1b2…bn-1
∴a101=b1b2…b100
∵数列{bn}为等比数列,
∴a101=(b1b100)(b2b99)…(b50b51)=$({b}_{50}{b}_{51})^{50}$$(201{6}^{\frac{1}{50}})^{50}$=2016,
故选:C.

点评 本题考查了数列递推式,考查了等比数列的性质,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知某几何体的三视图和直观图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.

(Ⅰ)求证:B1N⊥CN;
(Ⅱ)设M为AB中点,在棱BC上是否存在一点P,使MP∥平面B1CN?若存在,求$\frac{BP}{PC}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.不等式的解集$|{1+x+\frac{x^2}{2}}|<1$是(  )
A.{x|-1<x<0}B.$\left\{{\left.x\right|-\frac{3}{2}<x<0}\right\}$C.$\left\{{\left.x\right|-\frac{5}{4}<x<0}\right\}$D.{x|-2<x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=a(lnx-1)-x.
(1)求f(x)的单调区间;
(2)若f(x)≤0对任意x>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.函数f(x)=$\frac{1}{2}$x2+x+alnx(a∈R),当m≥1时,不等式f(2m-1)≥2f(m)-$\frac{3}{2}$恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lnx-$\frac{{a({x-1})}}{x+1}$.
(Ⅰ)若函数f(x)在(0,+∞)上为单调增函数,求a的取值范围;
(Ⅱ)若斜率为k的直线与y=lnx的图象交于A、B两点,点M(x0,y0)为线段AB的中点,求证:kx0>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=alnx-$\frac{4x-1}{x+1}$.
(1)若函数f(x)在(1,2)上单调递减,试求正数a的取值范围;
(2)设h(x)=x2-2bx+4,a=-2,若对于任意x1∈[1,2],存在x2∈[5,10],使得f(x1)≥h(x2)成立,试确定b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数y=x2+cosx是(  )
A.奇函数B.是偶函数C.既奇又偶函数D.非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角等于$\frac{π}{3}$,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,则$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角的余弦值等于(  )
A.$\frac{\sqrt{21}}{7}$B.$\frac{1}{7}$C.-$\frac{1}{7}$D.-$\frac{\sqrt{21}}{7}$

查看答案和解析>>

同步练习册答案