精英家教网 > 高中数学 > 题目详情
设平面向量,函数
(Ⅰ)求函数的值域和函数的单调递增区间;
(Ⅱ)当,且时,求的值.
(Ⅰ)值域是;单调增区间为;(Ⅱ).

试题分析:根据的特点,利用平面向量的数量积的运算法则化简,然后利用两角和的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,从而确定出的解析式,
根据、数量积公式和三角函数恒等变换,求出,在根据正弦函数的性质求出函数的值域;
②根据正弦函数的单调区间为,列出不等式,求出不等式的解集即可得到的取值范围即为的递增区间;
③根据,代入的解析式中,得到的值,根据的范围求出的范围,利用同角三角函数间的基本关系求出的值,把所求的式子利用二倍角的正弦函数公式化简,将的值代入即可求出值.
试题解析:依题意  (2分)
                  (4分)
(Ⅰ) 函数的值域是;                 (5分)
,解得     (7分)
所以函数的单调增区间为.       (8分)
(Ⅱ)由,
因为所以,        (10分)
          (12分).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)请用“五点法”画出函数在长度为一个周期的闭区间上的简图(先在所给的表格中填上所需的数值,再画图);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(2)求函数的单调递增区间;
(3)当时,求函数的最大值和最小值及相应的的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的周期为.

(1)若,求它的振幅、初相;
(2)在给定的平面直角坐标系中作出该函数在的图像;
(3)当时,根据实数的不同取值,讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

中,分别为角的对边,的面积满足.
(Ⅰ)求角A的值;
(Ⅱ)若,设角B的大小为x,用x表示c并求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,c是实数常数)的图像上的一个最高点,与该最高点最近的一个最低点是
(1)求函数的解析式及其单调增区间;
(2)在△ABC中,角A、B、C所对的边分别为,且,角A的取值范围是区间M,当时,试求函数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数的最小正周期为,有一条对称轴为,试写出一个满足条件的函数________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

函数.
(Ⅰ)求函数的单调递减区间;
(Ⅱ)将的图像向左平移个单位,再将得到的图像横坐标变为原来的2倍(纵坐标不变)后得到的图像,若的图像与直线交点的横坐标由小到大依次是求数列的前2n项的和。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=Acos(ωxφ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ”的(  ).
A.充分不必要条件B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题
①在△ABC中,A>B是sinA>sinB的充要条件;
②设m,n是两条直线,α,β是空间中两个平面.若,
③函数f(x)=是周期为2的偶函数;
④已知定点A(1,1),抛物线的焦点为F,点P为抛物线上任意一点,则的最小值为2;
以上命题正确的是________(请把正确命题的序号都写上)

查看答案和解析>>

同步练习册答案