精英家教网 > 高中数学 > 题目详情
10.某产品在某零售摊位的零售价x(单位:元)与每天的销售量y(单位:个)的统计资料如下表所示:由上表可得回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中的$\widehat{b}$=-4,据此模型预测零售价为15元时,每天的销售量为49
x16171819
y50344131

分析 根据所给的数据求出这组数据的横标和纵标的平均数,即这组数据的样本中心点,根据样本中心点在线性回归直线上,把样本中心点代入求出a的值,写出线性回归方程,代入x的值,预报出结果.

解答 解:∵由表格可知$\overline{x}$=$\frac{1}{4}$(16+17+18+19)=17.5,$\overline{y}$=$\frac{1}{4}$(50+34+41+31)=39,
∴这组数据的样本中心点是(17.5,39),
根据样本中心点在线性回归直线上,满足$\widehat{y}$=-4x+$\widehat{a}$,
∴39=$\widehat{a}$-4×17.5,
∴a=109,
∴这组数据对应的线性回归方程是$\widehat{y}$=-4x+109,
∵x=15,
∴$\widehat{y}$=-4×15+109=49,
故答案为:49

点评 本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.给出下列五四个命题:
①若直线l1:a2x-y+6=0与直线l2:4x-(a-3)y+9=0互相垂直,则a=-1;
②圆C1:x2+y2+2x=0与圆C2:x2+y2+2y-1=0恰有两条公切线;
③已知F1,F2是椭圆$\frac{x^2}{16}+\frac{y^2}{9}$=1的左右焦点,P为椭圆上一点,且|PF1|=3,则|PF2|=1;
④双曲线$\frac{y^2}{9}-\frac{x^2}{16}$=1的顶点到渐近线的距离为$\frac{12}{5}$;
⑤已知过点P(2,0)的直线与抛物线y2=8x交于A、B两点,O为坐标原点,则$\overrightarrow{OA}•\overrightarrow{OB}$=-12.
其中正确命题的序号是②④⑤(把你认为正确的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.不等式|x-1|-|x+2|≥a2-3a-1恒成立,则实数a的范围为[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知抛物线y2=2px(p>0)与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)有相同的焦点F,若点A是抛物线与双曲线的一个交点,且AF⊥x轴,则双曲线的离心率为(  )
A.$\frac{\sqrt{5}+1}{2}$B.$\sqrt{2}$+1C.$\sqrt{3}$+1D.$\frac{2\sqrt{2}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.对于实数a和b,定义运算a•b=$\left\{\begin{array}{l}{a(b+1),a≥b}\\{b(a+1),a<b}\end{array}\right.$,则式子lnc2•($\frac{1}{9}$)${\;}^{-\frac{1}{2}}$的值为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知正实数x+y满足logax+logay=c,其中a>1,c∈R.
(1)若a=c=2,则x+y的最小值为4;
(2)若c=3时,对任意的x∈[a,2a],都有y∈[a,a2]使得上述方程成立,则a的取值范围是[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,AB=AC=5,BC=6,O是△ABC的内心,若$\overrightarrow{AO}=x\overrightarrow{AB}+y\overrightarrow{AC}$,则x+y=$\frac{5}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若向量$\overrightarrow{a}$=(x,4,5),$\overrightarrow{b}$=(1,-2,2),且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值为$\frac{{\sqrt{2}}}{6}$,则x=(  )
A.3B.-3C.-11D.3或-11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数$y=2x+\frac{4}{x}$(x∈R+)的最小值为4$\sqrt{2}$.

查看答案和解析>>

同步练习册答案