精英家教网 > 高中数学 > 题目详情
19.若向量$\overrightarrow{a}$=(x,4,5),$\overrightarrow{b}$=(1,-2,2),且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值为$\frac{{\sqrt{2}}}{6}$,则x=(  )
A.3B.-3C.-11D.3或-11

分析 利用数量积运算性质、向量夹角公式即可得出.

解答 解:∵$\overrightarrow{a}•\overrightarrow{b}$=x-8+10=x+2,$|\overrightarrow{a}|$=$\sqrt{{x}^{2}+41}$,$|\overrightarrow{b}|$=$\sqrt{1+4+4}$=3.
∴$\frac{\sqrt{2}}{6}$=$cos<\overrightarrow{a},\overrightarrow{b}>$=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$=$\frac{x+2}{3\sqrt{{x}^{2}+41}}$,
则x+2>0,即x>-2,
则方程整理得x2+8x-33=0,
解得x=-11或3.
x=-11舍去,
∴x=3
故选:A.

点评 本题考查了数量积运算性质、向量夹角公式,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设集合U=R,M={x||x|<2},N={y|y=2x-1},则M∩(∁UN)=(  )
A.[-1,2)B.(-2,2)C.(-2,+∞)D.(-2,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某产品在某零售摊位的零售价x(单位:元)与每天的销售量y(单位:个)的统计资料如下表所示:由上表可得回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中的$\widehat{b}$=-4,据此模型预测零售价为15元时,每天的销售量为49
x16171819
y50344131

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若α与β为△ABC的内角,则“α=β”是“sinα=sinβ”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.数列{an}满足a1=2,${a_{n+1}}=\frac{a_n}{{1+3{a_n}}}$,令${b_n}=\frac{1}{a_n}$
(Ⅰ)求证:{bn}为等差数列;         
(Ⅱ)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图所示,点B在以PA为直径的圆周上,点C在线段AB上,已知PA=5,PB=3,PC=$\frac{15\sqrt{2}}{7}$,设∠APB=α,∠APC=β,α,β均为锐角,则角β的值为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.$\frac{1}{2}$(4$\overrightarrow{a}$+$\overrightarrow{b}$)-3($\overrightarrow{b}$-$\overrightarrow{a}$)=5$\overrightarrow{a}$-$\frac{5}{2}$$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在1和256中间插入三个数a,b,c使这五个数成等比数列,则其公比q为(  )
A.±2B.2C.±4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.$\overrightarrow a$=(2,1,3),$\overrightarrow b$=(-1,2,1),若$\overrightarrow a⊥(\overrightarrow a-λ\overrightarrow b)$,则λ=(  )
A.-2B.$-\frac{14}{3}$C.$\frac{14}{3}$D.2

查看答案和解析>>

同步练习册答案