精英家教网 > 高中数学 > 题目详情
已知函数f(x)定义在[-1,1]上,设g(x)=f(x-c)和h(x)=f(x-c2)两个函数的定义域分别为A和B,若A∩B=∅,则实数c的取值集合为______.
∵函数f(x)定义域为[-1,1],
∴由-1≤x-c≤1得c-1≤x≤1+c,即A=[c-1,c+1].
由-1≤x-c2≤1得c2-1≤x≤1+c2,即B=[c2-1,c2+1].
若A∩B=∅,
则c2-1>c+1 或c2+1<c-1,
即c2-c-2>0 ①或c2-c+2<0,②
由①解得c>2或c<-1.
由②知不等式无解.
∴c>2或c<-1.
故答案为:(-∞,-1)∪(2,+∞).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知的定义域是,求函数的定义域

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=
x2+x-12
的定义域是(  )
A.{x|x<-4或x>3}B.{x|-4<x<3}C.{x|x≤-4或x≥3}D.{x|-4≤x≤3}

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f(x)=x2-2x,g(x)=mx+2,对?x1∈[-1,2],?x0∈[-1,2],使g(x1)=f(x0),则m的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=lg(x-5)的定义域是(  )
A.(-∞,5]B.(-∞,5)C.(5,+∞)D.[5,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=
-x2+2x+8
的值域是(  )
A.(-∞,3]B.[0,3]C.[0,9]D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)的定义域为[1,3],则函数f(2x+1)的定义域为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义在对一切实数x恒成立,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=的定义域是(  )
A.{x∣0<x<3}B.{x∣x<0或x>3}
C.{x∣x≤0或x≥3}D.{x∣0≤x≤3}

查看答案和解析>>

同步练习册答案