【题目】已知三角形两边长分别为
和
,第三边上的中线长为
,则三角形的外接圆半径为________.
【答案】1
【解析】分析:设AB=1,AC=
,AD=1,D为BC边的中点,BC=2x,则BD=DC=x,由余弦定理求出cos∠ADB,cos∠ADC通过cos∠ADB=﹣cos∠ADC,代入可求BC,则可得A=90°,外接圆的直径2R=BC,从而可求结果.
详解:设AB=1,AC=
,AD=1,D为BC边的中点,BC=2x,
则BD=DC=x,
![]()
△ABD中,由余弦定理可得cos∠ADB=
,
△ADC中,由余弦定理可得,cos∠ADC=
,
因为cos∠ADB=﹣cos∠ADC
所以
=﹣![]()
∴x=1
∴BC=2
∴AB2+AC2=BC2即A=90°
∴外接圆的直径2R=BC=2,从而可得R=1
故答案为:1.
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
=1(a>b>0),F1 , F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.![]()
(1)若∠F1AB=90°,求椭圆的离心率;
(2)若椭圆的焦距为2,且
=2
,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小朋友按如下规则练习数数,
大拇指,
食指,
中指,
无名指,
小指,
无名指,
中指,
食指,
大拇指,
食指,
,一直数到
时,对应的指头是( )
![]()
A. 小指 B. 中指 C. 食指 D. 无名指
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列结论正确的个数是( )
①若正实数
满足
,则
的最小值是16;
②已知
,则函数
的最大值为
;
③已知
,且
,则
的最小值是36;
④若对任意实数
,不等式
恒成立,则实数
的取值范围是
。
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
为了保护环境,发展低碳经济,某单位在政府部门的支持下,进行技术攻关,采用了新工艺,新上了把二氧化碳转化为一种可利用的化工产品的项目.经测算,月处理成本
(元)与月处理量
(吨)之间的函数关系可以近似的表示为:
,且每处理一吨二氧化碳可得到能利用的化工产品价值为200元,若该项目不获利,政府将补贴.
(I)当
时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损;
(II)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋内装有6个球,这些球依次被编号为1、2、3、……、6,设编号为n的球重n2-6n+12(单位:克),这些球等可能地从袋里取出(不受重量、编号的影响).
(1)从袋中任意取出一个球,求其重量大于其编号的概率;
(2)如果不放回地任意取出2个球,求它们重量相等的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com