精英家教网 > 高中数学 > 题目详情
12.设x,y满足$\left\{\begin{array}{l}{x-y+1>0}\\{x+y≥4}\\{2x-y≤1}\end{array}\right.$,则z=x-y的取值范围为[-1,$-\frac{2}{3}$].

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x-y+1>0}\\{x+y≥4}\\{2x-y≤1}\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{2x-y=1}\\{x+y=4}\end{array}\right.$,解得A($\frac{5}{3},\frac{7}{3}$),
化目标函数z=x-y为y=x-z,
由图可知,当直线过A时,直线在y轴上的截距最小,z有最大值为$\frac{5}{3}-\frac{7}{3}=-\frac{2}{3}$,
当直线与直线y=x+1重合时,直线在y轴上的截距最大,z有最小值为-1.
∴z=x-y的取值范围为[-1,$-\frac{2}{3}$].
故答案为:[-1,$-\frac{2}{3}$].

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知直线x+y+m=0与圆x2+y2=2交于不同的两点A,B,O是坐标原点,若$\overrightarrow{OD}=\overrightarrow{OA}+\overrightarrow{OB}$且D在圆内,则实数m的取值范围是-1<m<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)已知a,b分别是方程2x+x-5=0和log2x+x-5=0的解,求a+b的值;
(2)已知a,b分别是方程2x+2x=5和2x+log2(x-1)=5的解,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设数列{an}是等差数列,a3=5,a5=9,数列{bn}的前n项和为Sn,Sn=2n+1-2(n∈N*).
(1)求数列{an}、{bn}的通项公式;
(2)若cn=an•bn(n∈N*),Tn为数列{cn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若(log23)x-(log53)x≥(log23)-y-(log53)-y,判断x+y和0的关系,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知不等式ax2+5x-2>0的解集是M.
(1)若M=∅,求实数a的取值范围;
(2)若M{x|$\frac{1}{2}$<x<2},求不等式ax2-5x+a2-1>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)满足:当x≥6时,f(x)=($\frac{1}{2}$)x;当x<6时,f(x)=f(x+1),则f($\frac{5}{2}$)的值为(  )
A.$\frac{\sqrt{2}}{64}$B.$\frac{\sqrt{3}}{64}$C.$\frac{\sqrt{2}}{128}$D.$\frac{\sqrt{3}}{128}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.证明:a${\;}^{lo{g}_{a}N}$=N.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)计算:(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$-(5$\frac{4}{9}$)0.5+(0.008)${\;}^{-\frac{2}{3}}$÷(0.02)${\;}^{-\frac{1}{2}}$×(0.32)${\;}^{\frac{1}{2}}$;
(2)化简:a${\;}^{\frac{1}{3}}$(a${\;}^{\frac{1}{3}}$-2b${\;}^{\frac{1}{3}}$)$÷({a}^{-\frac{2}{3}}-\frac{2\root{3}{b}}{a})×\frac{\sqrt{a•\root{3}{{a}^{2}}}}{\root{5}{\sqrt{a}•\root{3}{a}}}$.

查看答案和解析>>

同步练习册答案