精英家教网 > 高中数学 > 题目详情
2.如果函数f(x)=x2+(1-a)x+3在区间[1,4]上是单调函数,那么实数a的取值范围是(  )
A.a≥9或a≤3B.a≥7或a≤3C.a>9或a<3D.3≤a≤9

分析 函数f(x)=x2+(1-a)x+3的对称轴x=-$\frac{1-a}{2}$,开口朝上,f(x)在区间[1,4]上单调函数,-$\frac{1-a}{2}$≤1 或-$\frac{1-a}{2}$≥4

解答 解:由题意知,函数f(x)=x2+(1-a)x+3的对称轴x=-$\frac{1-a}{2}$,开口朝上
f(x)在区间[1,4]上单调函数,
∴-$\frac{1-a}{2}$≤1 或-$\frac{1-a}{2}$≥4,
∴a≥9或a≤3,
故选:A.

点评 本题主要考查了二次函数的基本性质与单调性,属简单题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.点P是长轴在x轴上的椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1上的动点,F1,F2分别为椭圆的两个焦点,椭圆的半焦距为c,则|PF1|•|PF2|的最大值是(  )
A.a2B.1C.b2D.c2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.实数x,y满足$\left\{\begin{array}{l}x-y+1≤0\\ x>0\\ y≤2\end{array}\right.$,
(1)若z=2x+y,求z的最大值;
(2)若z=x2+y2,求z的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在边长为1的正三角形AOB中,P为边AB上一个动点,则$\overrightarrow{OP}$•$\overrightarrow{BP}$ 的最小值是(  )
A.-$\frac{3}{16}$B.$\frac{3}{16}$C.-$\frac{1}{16}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$a,曲线C2的参数方程为$\left\{\begin{array}{l}{x=-1+cosθ}\\{y=-1+sinθ}\end{array}\right.$(θ为参数).
(Ⅰ)求C1的直角坐标方程;
(Ⅱ)当C1与C2有两个公共点时,求实数a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\sqrt{m{x^2}+mx+2}$的值域是[0,+∞),则实数m的取值范围是[8,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.计算(${\frac{1}{27}}$)${\;}^{-\frac{1}{3}}}$+(π-1)0+2log31-lg2-lg5=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.给出以下数对序列:
(1,1)
(1,2)(2,1)
(1,3)(2,2)(3,1)
(1,4)(2,3)(3,2)(4,1)

记第i行的第j个数对为aij,如:a43=(3,2),则anm=(  )
A.(m,n-m+1)B.(m-1,n-m)C.(m-1,n-m+1)D.(m,n-m)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{1}{x}$.
(1)证明f(x)在[2,6]上为减函数;
(2)求f(x)在[2,6]上的最大值和最小值.

查看答案和解析>>

同步练习册答案