精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1 (a>b>0)以双曲线
x2
3
-y2=1
的焦点为顶点,其离心率与双曲线的离心率互为倒数.
(1)求椭圆C的方程;
(2)若椭圆C的左、右顶点分别为点A,B,点M是椭圆C上异于A,B的任意一点.
①求证:直线MA,MB的斜率之积为定值;
②若直线MA,MB与直线x=4分别交于点P,Q,求线段PQ长度的最小值.
(1)易知双曲线
x2
3
-y2=1
的焦点为(-2,0),(2,0),离心率为
2
3

则在椭圆C中a=2,e=
3
2
,故在椭圆C中c=
3
,b=1,∴椭圆C的方程为
x2
4
+y2=1

(2)①设M(x0,y0)(x0≠±2),由题易知A(-2,0),B(2,0),则kMA=
y0
x0+2
,kMB=
y0
x0-2

∴kMA•kMB=
y0
x0+2
×
y0
x0-2
=
y20
x20
-4

∵点M在椭圆C上,∴
x20
4
+
y20
=1
,即
y20
=1-
x20
4
=-
1
4
(
x20
-4)
,故kMA•kMB=-
1
4
,即直线MA,MB的斜率之积为定值.    
②设P(4,y1),Q(4,y2),则kMA=kPA=
y1
6
,kMB=kBQ=
y2
2

由①得
y1
6
×
y2
2
=-
1
4
,即y1y2=-3,当y1>0,y2<0时,|PQ|=|y1-y2|≥2
-y1y2
=2
3
,当且仅当y1=
3
,y2=-
3
时等号成立.
同理,当y1<0,y2>0时,当且仅当y1=-
3
,y2=
3
时,|PQ|有最小值2
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案