精英家教网 > 高中数学 > 题目详情
10.已知两条直线m,n和平面α,那么下列命题中的真命题为(  )
A.若m∥n,n?α,则m∥αB.若m⊥n,n?α,则m⊥α
C.若m∥n,n?α,m?α,则m∥αD.若m⊥n,n?α,m?α,则m⊥α

分析 利用线面平行、垂直的判定定理,即可得出结论.

解答 解:线面平行的判定定理中要求直线m?α,所以A错误;
线面垂直的判定定理中要求直线m垂直于平面中的两条相交直线,所以B错误;
由线面平行的判定定理,可得C正确;
由线面垂直的判定定理,可得D不正确.
故选:C.

点评 本题主要考查空间直线和平面的位置关系的判断,要求熟练掌握相应的判定定理和性质定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.若1og23=a,5b=2,试用a,b表示log245=$2a+\frac{1}{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知sin($\frac{π}{6}$-a)=$\frac{3}{5}$,则sin($\frac{π}{6}$+2a)=$\frac{7}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.当x>-3时,不等式a≤x+$\frac{2}{x+3}$恒成立,则a的取值范围是2$\sqrt{2}$-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若方程x2-x+m=0有两个不等正根,则实数m的取值范围是(0,$\frac{1}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知角α的终边经过点P(0,1),则tanα=(  )
A.0B.-4C.4D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图是$y=Asin(ωx+φ)(A>0,ω>0,0<φ<\frac{π}{2})$的图象,则其解析式为$y=2sin(x+\frac{π}{6})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=1-cosα}\\{y=sinα}\end{array}\right.$(α位参数),以坐标原点为极点,x轴的非负半轴为极轴,建立的极坐标系中,曲线C2的方程为ρ=2sinθ.
(1)求C1和C2的普通方程;
(2)求C1和C2公共弦的垂直平分线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆C:x2+y2-4x+2y=0与圆C2:x2+y2-2y=0相交于A,B两点.
(1)求过A,B两点且圆心在直线2x+y=2上的圆C的方程;
(2)设P,Q是圆C上两点,且满足|OP|•|OQ|=1,求坐标原点到直线PQ的距离.

查看答案和解析>>

同步练习册答案