科目:高中数学 来源: 题型:解答题
(本题满分12分)
在△ABC中,三个内角是A、B、C的对边分别是a、b、c,其中c=10,且
(I)求证:△ABC是直角三角形;
(II)设圆O过A、B、C三点,点P位于劣弧AC上,∠PAB=60°.求四边形ABCP的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)△ABC的外接圆半径为1,角A,B,C的对边分别为a,b,c.向量=, =满足//.
(1)求的取值范围;
(2)若实数x满足abx=a+b,试确定x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
某货轮在A处看灯塔B在货轮北偏东,距离为n mile;在A处看灯塔C在货轮的北偏西,距离为n mile.货轮由A处向正北航行到D处时,再看灯塔B在北偏东,求:
(Ⅰ)A处与D处之间的距离;
(Ⅱ)灯塔C与D处之间的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
某港口要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口的O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.
(I)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?
(II)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com