精英家教网 > 高中数学 > 题目详情

【题目】如图所示,我艇在A处发现一走私船在方位角45°且距离为12海里的B处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立即以14海里/小时的速度追击,求我艇追上走私船所需要的最短时间.

【答案】解:设我艇追上走私船所需要的时间为t小时,则BC=10t,AC=14t,
在△ABC中,∠ABC=120°,根据余弦定理知:(14t)2=(10t)2+122﹣21210tcos 120°,
∴t=2或t=﹣ (舍去),
故我艇追上走私船所需要的时间为2小时.
【解析】设我艇追上走私船所需要的时间为t小时,根据各自的速度表示出BC与AC,由∠ABC=120°,利用余弦定理列出关于t的方程,求出方程的解即可得到t的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且满足;数列的前项和为,且满足 .

(1)求数列的通项公式;

(2)是否存在正整数,使得恰为数列中的一项?若存在,求所有满足要求的;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(1,﹣1),B(4,0),C(2,2),平面区域D是所有满足 (1<λ≤a,1<μ≤b)的点P(x,y)组成的区域.若区域D的面积为4,则ab﹣a﹣b=(
A.﹣1
B.﹣
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答
(1)已知正数x,y满足x+2y=1,求 1 x + 1 y 的最小值
(2)已知x>1,求:y=x+最小值,并求相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)已知函数,其中,且

(Ⅰ)讨论函数的单调性;

(Ⅱ)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线经过点倾斜角为.(10分).

(1)写出直线的参数方程

(2)求直线与直线的交点到点的距离

(3)设与圆 相交于两点,求点两点的距离的和与积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x(1+m|x|),关于x的不等式f(x)>f(x+m)的解集记为T,若区间[﹣ ]T,则实数m的取值范围是(
A.( ,0)
B.( ,0)
C.(﹣∞,
D.( ,0)∪(0,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是公差为1的等差数列,a1 , a5 , a25成等比数列.
(1)求数列{an}的通项公式;
(2)设bn= 3+an , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)若过点恰有两条直线与曲线相切,求的值;

)用表示中的最小值,设函数,若恰有三个零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案