精英家教网 > 高中数学 > 题目详情
a
=(2cosx,1),
b
=(cosx,
3
sin2x),f(x)=
a
b
,x∈R.
(1)若f(x)=0且x∈[-
π
3
π
3
],求x的值.
(2)若函数g(x)=cos(ωx-
π
3
)+k(ω>0,k∈R)与f(x)的最小正周期相同,且g(x)的图象过点(
π
6
,2),求函数g(x)的值域及单调递增区间.
(Ⅰ)f(x)=
a
b
=2cos2x+
3
sin2x
=1+cos2x+
3
sin2x=2sin(2x+
π
6
)+1                      …(3分)
由f(x)=0,得2sin(2x+
π
6
)+1=0,可得sin(2x+
π
6
)=-
1
2
,…(4分)
又∵x∈[-
π
3
π
3
],∴-
π
2
≤2x+
π
6
6
                       …(5分)
∴2x+
π
6
=-
π
6
,可得x=-
π
6
                                 …(6分)
(Ⅱ)由(Ⅰ)知,f(x)=2sin(2x+
π
6
)+1,
因为g(x)与f(x)的最小正周期相同,所以ω=2,…(7分)
又∵g(x)的图象过点(
π
6
,2),∴cos(2×
π
6
-
π
3
)+k=2,
由此可得1+k=2,解得 k=1,…(8分)
∴g(x)=cos(2x-
π
3
)+1,其值域为[0,2],…(9分)
2kπ-π≤2x-
π
3
≤2kπ,(k∈Z)…(10分)
∴kπ-
π
3
≤x≤kπ+
π
6
,(k∈Z),…(11分)
所以函数的单调增区间为[kπ-
π
3
,kπ+
π
6
],(k∈Z).…(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
a
b
,其中向量
a
=(2cosx,1),
b
=(cosx,-1)(x∈R).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在△ABC中,角A、B、C所对的边分别为a、b、c,若f(A)=-
1
2
,且a=
3
,b+c=3,(b>c),求b与c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(2cosx,1),
b
=(cosx,
3
sin2x),f(x)=
a
b
,x∈R.
(1)若f(x)=0且x∈[0,
π
2
],求x的值;
(2)若函数g(x)=cos(ωx-
π
3
)+k
(ω>0,k∈R)与f(x)的最小正周期相同,且g(x)的图象过点(
π
6
,2),求函数g(x)的值域及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•淄博二模)设
a
=(2cosx,1),
b
=(cosx,
3
sin2x),f(x)=
a
b
,x∈R.
(1)若f(x)=0且x∈[-
π
3
π
3
],求x的值.
(2)若函数g(x)=cos(ωx-
π
3
)+k(ω>0,k∈R)与f(x)的最小正周期相同,且g(x)的图象过点(
π
6
,2),求函数g(x)的值域及单调递增区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

a
=(2cosx,1),
b
=(cosx,
3
sin2x),f(x)=
a
b
,x∈R.
(1)若f(x)=0且x∈[0,
π
2
],求x的值;
(2)若函数g(x)=cos(ωx-
π
3
)+k
(ω>0,k∈R)与f(x)的最小正周期相同,且g(x)的图象过点(
π
6
,2),求函数g(x)的值域及单调递增区间.

查看答案和解析>>

同步练习册答案