精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,中若a1<0,Sn为前n项之和,且S7=S17,则Sn为最小时的n的值为______.
∵S7=S17
7a1+
7×6
2
d=17a1+
17×16
2
d

整理得,a1=-
23
2
d

Sn=na1+
n(n-1)
2
d
=
d
2
n2-12dn

=
d
2
(n2-24n)=
d
2
[(n-12)2-144]

又a1<0,∴d>0
∴当n=12时,Sn取最小值.
故答案为12
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=-2010,其前n项的和为Sn.若
S2010
2010
-
S2008
2008
=2,则S2010=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+3a8+a15=60,则2a9-a10的值为
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的两个根,那么使得前n项和Sn为负值的最大的n的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若S4=1,S8=4,则a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步练习册答案