【题目】已知点,直线,动点到点的距离等于它到直线的距离.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)是否存在过的直线,使得直线被曲线截得的弦恰好被点所平分?
【答案】(Ⅰ)(Ⅱ)直线的方程为
【解析】
试题分析:(Ⅰ)根据点P到点F的距离等于它到直线l的距离,利用抛物线的定义,可得点P的轨迹C是以F为焦点、直线x=-1为准线的抛物线,从而可求抛物线方程为;(Ⅱ)假假设存在满足题设的直线m.设直线m与轨迹C交于A,B,由中点坐标公式可得,利用点差法求直线的斜率,从而可得结论
试题解析:(1)因点P到点F的距离等于它到直线l的距离,
所以点P的轨迹C是以F为焦点、直线x=-1为准线的抛物线,
其方程为…………………4分
(2)假设存在满足题设的直线.设直线与轨迹交于,
依题意,得.
∵在轨迹上,
∴有,将,得.
当时,弦的中点不是,不合题意,
∴,即直线的斜率,
注意到点在曲线的张口内(或:经检验,直线与轨迹相交)
∴存在满足题设的直线
且直线的方程为:即.…………………12分
科目:高中数学 来源: 题型:
【题目】在如图所示的圆台中,是下底面圆的直径,是上底面圆的直径,是圆台的一条母线.
(1)已知,分别为,的中点,求证:平面;
(2)已知,,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在中,平面平面,,.设分别为中点.
(1)求证:平面;
(2)求证:平面;
(3)试问在线段上是否存在点,使得过三点的平面内的任一条直线都与平面平行?
若存在,指出点的位置并证明;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量a=(cos α,sin α),b=(cos β,sin β),c=(-1,0).
(1) 求向量b+c的模的最大值;
(2) 若α=,且a⊥(b+c),求cos β的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆的离心率为,右顶点为,直线过原点,且点在x轴的上方,直线与分别交直线:于点、.
(1)若点,求椭圆的方程及△ABC的面积;
(2)若为动点,设直线与的斜率分别为、.
①试问是否为定值?若为定值,请求出;否则,请说明理由;
②求△AEF的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=4.若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设事件A表示“关于的一元二次方程有实根”,其中,为实常数.
(Ⅰ)若为区间[0,5]上的整数值随机数,为区间[0,2]上的整数值随机数,求事件A发生的概率;
(Ⅱ)若为区间[0,5]上的均匀随机数,为区间[0,2]上的均匀随机数,求事件A发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于的一次函数.
(1)设集合和,分别从集合和中随机取一个数作为和,求函数是增函数的概率;
(2)实数满足条件,求函数的图象经过第一、二、三象限的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com