精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=4.若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程;

【答案】y=0或7x+24y-28=0.

【解析】试题分析:根据直线和圆相交的弦长公式设出直线斜率,根据半弦长、半径、弦心距满足勾股定理,解方程求出k值,代入即得直线l的方程.

试题解析:

由题意可知直线l的斜率存在,设直线l的方程为y=k(x-4),即kx-y-4k=0,所以圆心C1(-3,1)到直线l的距离,由点到直线的距离公式得=1,化简得24k2+7k=0,解得k=0或k=-.

所以直线l的方程为y=0或y=-(x-4),即y=0或7x+24y-28=0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.

(1)根据茎叶图判断哪个班的平均身高较高;

(2)计算甲班的样本方差;

(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin-2·sin2x.

(1) 求函数f(x)的最小正周期;

(2) 求函数f(x)图象的对称轴方程、对称中心的坐标;

(3) 当0≤x≤时,求函数f(x)的最大、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,直线,动点到点的距离等于它到直线的距离.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)是否存在过的直线,使得直线被曲线截得的弦恰好被点所平分?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 :关于的方程的两根之差的绝对值大于3.如果为真命题,为假命题,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线上的点到焦点的距离.

)求抛物线的方程;

)如图,直线与抛物线交于两点,点关于轴的对称点是.求证:直线恒过一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={1,2,3,4,5,6,7,8,9),在集合A中任取三个元素,分别作为一个三位数的个位数,十位数和百位数,记这个三位数为a,现将组成a的三个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a=219,则I(a)=129,D(a)=921),阅读如图所示的程序框图,运行相应的程序,任意输入一个a,则输出b的值为

A.792 B.693

C.594 D.495

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:的离心率为,点在椭圆C上.

1求椭圆C的方程;

2设动直线与椭圆C有且仅有一个公共点,判断是否存在以原点O为圆心的圆,满足此圆与相交两点两点均不在坐标轴上,且使得直线 的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)当时,求曲线处的切线方程;

)当时,若不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案