精英家教网 > 高中数学 > 题目详情
19.已知角θ的顶点在原点,始边与x轴的正半轴重合,终边在直线2x-3y=0上,则tan2θ=(  )
A.$\frac{12}{13}$B.$\frac{12}{5}$或-$\frac{12}{5}$C.$\frac{12}{5}$D.-$\frac{12}{5}$或$\frac{12}{13}$

分析 在角θ的终边上任意取一点M(3,2),利用任意角的三角函数的定义求得tanθ 的值,再利用二倍角的正切公式求得tan2θ的值.

解答 解:由于角θ的终边在直线2x-3y=0上,在角θ的终边上任意取一点M(3,2),则tanθ=$\frac{2}{3}$,
∴tan2θ=$\frac{2tanθ}{{1-tan}^{2}θ}$=$\frac{\frac{4}{3}}{1-\frac{4}{9}}$=$\frac{12}{5}$,
故选:C.

点评 本题主要考查任意角的三角函数的定义,二倍角的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.设[x]表示不超过x的最大整数(如[2]=2,[$\frac{5}{4}$]=1),对于给定的n∈N*,定义${C}_{n}^{x}$=$\frac{n(n-1)…(n-[x]+1)}{x(x-1)…(x-[x]+1)}$,x∈[1,+∞),当x∈[3,4)时,函数${C}_{8}^{x}$的值域为(14,56].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=-sin2x+sinx+$\frac{1}{2}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$].
(1)求函数f(x)的值域;
(2)设函数g(x)=acosx-2,x∈[-$\frac{π}{2}$,$\frac{π}{2}$],若对于任意x1∈[-$\frac{π}{2}$,$\frac{π}{2}$],一定存在x0∈[-$\frac{π}{2}$,$\frac{π}{2}$],使得g(x0)=f(x1)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.为了解初中生的身体素质,某地随机抽取了n名学生进行跳绳测试,根据所得数据画样本的频率分布直方图如图所示,且从左到右第2小组的频数是36,则n的值为120.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.圆O的半径为4,PO垂直圆O所在的平面,且PO=3,那么点P到圆上各点的距离是5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某课题研究小组对学生报读文科和理科的人数进行了调查统计,结果如下:
  文科 理科 合计
 男生 5298 150 
 女生 9060 150 
 合计 42158 300 
在探究学生性别与报读文科、理科是否有关时,根据以上数据可以得到K2=19.308,则(  )
A.学生的性别与是否报读文科、理科有关
B.学生的性别与是否报读文科、理科无关
C.在犯错误的概率不超过0.001的前提下认为学生的性别与是否报读文科、理科有关
D.在犯错误的概率不超过0.001的前提下认为学生的性别与是否报读文科、理科无关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在直角坐标系xOy中,以原点O为极点,以x轴的正半轴为极轴建立极坐标系,已知曲线$\left\{\begin{array}{l}{x={x}_{0}+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,且0≤α<π)与曲线ρ=$\frac{2}{\sqrt{1+3si{n}^{2}θ}}$交于两点A,B,且线段AB中点的极坐标为($\sqrt{2}$,-$\frac{π}{4}$),则tanα=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数y=sin2x•cosx的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知等比数列{an}前n项和为Sn,则下列一定成立的是(  )
A.若a7>0,则a2015<0B.若a4>0,则a2014<0
C.若a7>0,则S2015>0D.若a4>0,则S2014>0

查看答案和解析>>

同步练习册答案