精英家教网 > 高中数学 > 题目详情
9.设[x]表示不超过x的最大整数(如[2]=2,[$\frac{5}{4}$]=1),对于给定的n∈N*,定义${C}_{n}^{x}$=$\frac{n(n-1)…(n-[x]+1)}{x(x-1)…(x-[x]+1)}$,x∈[1,+∞),当x∈[3,4)时,函数${C}_{8}^{x}$的值域为(14,56].

分析 x∈[3,4)时,[x]=3,根据定义化简Cxn,求出Cx8的表达式,再利用函数的单调性求出Cx8的值域.

解答 解:当x∈[3,4)时,[x]=3,∴Cxn=$\frac{n(n-1)(n-2)}{x(x-1)(x-2)}$,
Cx8=$\frac{8×7×6}{x(x-1)(x-2)}$=$\frac{336}{x(x-1)(x-2)}$;
又∵当x∈[3,4)时,f(x)=x(x-1)(x-2)=x3-3x2+2x,
∴f′(x)=3x2-6x+2>0,
∴f(x)是增函数;
∴f(x)<f(4)=24,且f(x)≥f(3)=6;
∴f(x)∈[6,24),
∴$\frac{336}{x(x-1)(x-2)}$∈(14,56],
即Cx8∈(14,56].

点评 本题考查了新定义的函数的应用问题,也考查了求函数在某一区间上的最值问题,解题时应灵活运用基础知识,以便解答问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设f(x)=$\left\{\begin{array}{l}{2,|x|≤1}\\{{x}^{2}+1,1<|x|≤3}\end{array}\right.$,求g(x)=f(x+3)+f(3x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={1,3,x3},B={x+2,1},是否存在实数x,使得B⊆A?若存在,求出集合A,B;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知{an}是等差数列,点(an,bn)在函数f(x)=2x的图象上(n∈N*),且a1=0,函数f(x)的图象在点(a2,b2)处切线的横截距为1-$\frac{1}{ln2}$.
(1)求数列{an}、{bn}的通项公式;
(2)若数列{bn}的前n项和为Sn,cn+1=(-1)n+1cn+Sn,c1=2,求数列{cn}的前40项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=lnx-$\frac{1}{2}$ln[2x2-2(a+1)x+a(a+1)],其中0<a<2
(1)求函数f(x)的定义域D(用区间表示)
(2)讨论函数f(x)在D上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知抛物线y2=4x的焦点为F,准线为l,点P(x0,y0)(y0>0)在其上,线段PF与抛物线交于点Q,若$\overrightarrow{PQ}$=3$\overrightarrow{QF}$,则直线PF的斜率为-2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设圆的半径为x,则圆的面积S与半径x的函数关系式是(  )
A.S=2πx(x>0)B.S=πx2(x>0)C.S=$\frac{1}{2}$πx2(x>0)D.S=$\frac{1}{3}$πx2(x>0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.计算:(0.064)${\;}^{-\frac{1}{3}}$-(-$\frac{7}{8}$)0+[(-2)3]${\;}^{-\frac{4}{3}}$+16-0.75+|-0.01|${\;}^{\frac{1}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知角θ的顶点在原点,始边与x轴的正半轴重合,终边在直线2x-3y=0上,则tan2θ=(  )
A.$\frac{12}{13}$B.$\frac{12}{5}$或-$\frac{12}{5}$C.$\frac{12}{5}$D.-$\frac{12}{5}$或$\frac{12}{13}$

查看答案和解析>>

同步练习册答案