精英家教网 > 高中数学 > 题目详情
1.设圆的半径为x,则圆的面积S与半径x的函数关系式是(  )
A.S=2πx(x>0)B.S=πx2(x>0)C.S=$\frac{1}{2}$πx2(x>0)D.S=$\frac{1}{3}$πx2(x>0)

分析 直接由圆的面积公式得答案.

解答 解:∵圆的半径为x,
∴由圆的面积公式可得,圆的面积S=πx2(x>0).
故选:B.

点评 本题考查圆的面积公式,关键是对公式的记忆,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若函数f(x)的定义域是[0,4],则函数g(x)=$\frac{f(x+1)}{x}$的定义域是(  )
A.[0,3]B.(-1,3)C.[-1,0)∪(0,3]D.(-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若数列{an}是公差为正数的等差数列,且对任意n∈N*有an•Sn=2n3-n2
(1)求数列{an}的通项公式;
(2)是否存在数列{bn},使得数列{anbn}的前n项和为An=5+(2n-3)2n-1(n∈N*)?若存在,求出数列{bn}的通项公式及前n项和Tn;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设[x]表示不超过x的最大整数(如[2]=2,[$\frac{5}{4}$]=1),对于给定的n∈N*,定义${C}_{n}^{x}$=$\frac{n(n-1)…(n-[x]+1)}{x(x-1)…(x-[x]+1)}$,x∈[1,+∞),当x∈[3,4)时,函数${C}_{8}^{x}$的值域为(14,56].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=xekx-1(k≠0).
(1)判断函数f(x)的单调性;
(2)当k=1时,证明:对任意的x>0都有f(x)≥lnx+x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知抛物线C的顶点是原点,焦点在y轴正半轴上,经过点P(0,4)作直线l,如果直线l与抛物线C相交于两点,设A,B,那么以AB为直径的圆经过原点.
(1)求抛物线C的方程;
(2)若直线l与直线6x-3y+2=0平行,l与抛物线C交于D,E两点,求以DE为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数f(x)=k2x-2-x在(-∞,+∞)上是奇函数,则函数g(x)=log2(x+k)的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=-sin2x+sinx+$\frac{1}{2}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$].
(1)求函数f(x)的值域;
(2)设函数g(x)=acosx-2,x∈[-$\frac{π}{2}$,$\frac{π}{2}$],若对于任意x1∈[-$\frac{π}{2}$,$\frac{π}{2}$],一定存在x0∈[-$\frac{π}{2}$,$\frac{π}{2}$],使得g(x0)=f(x1)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在直角坐标系xOy中,以原点O为极点,以x轴的正半轴为极轴建立极坐标系,已知曲线$\left\{\begin{array}{l}{x={x}_{0}+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,且0≤α<π)与曲线ρ=$\frac{2}{\sqrt{1+3si{n}^{2}θ}}$交于两点A,B,且线段AB中点的极坐标为($\sqrt{2}$,-$\frac{π}{4}$),则tanα=$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案