精英家教网 > 高中数学 > 题目详情

某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:
甲:102,101,99,98,103,98,99;
乙:110,115,90,85,75,115,110.
(1)这种抽样方法是哪一种方法?
(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定?

(1)系统抽样;(2)甲

解析试题分析:(1)这个抽样是在自动包装传送带上每隔30分钟抽取一包产品,是一个具有相同间隔的抽样,并且总体的个数比较多,这是一个系统抽样;
(2)做出两组数据的平均数和方差,把两组数据的方差和平均数进行比较,看出平均数相等,而甲的方差小于乙的方差,得到甲车间比较稳定.
试题解析:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样.
(2)=(102+101+99+98+103+98+99)=100,
=(110+115+90+85+75+115+110)=100,
=(4+1+1+4+9+4+1)≈3.428 57,
=(100+225+100+225+625+225+100)=228.57,
,故甲车间产品比较稳定.
考点:1.系统抽样;2.样本平均数与方差.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某学校为调查高一新生上学路程所需要的时间(单位:分钟),从高一年级新生中随机抽取100名新生按上学所需时间分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.

(1)根据图中数据求的值
(2)若从第3,4,5组中用分层抽样的方法抽取6名新生参与交通安全问卷调查,应从第3,4,5组
各抽取多少名新生?
(3)在(2)的条件下,该校决定从这6名新生中随机抽取2名新生参加交通安全宣传活动,求第4组至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:

日期
12月1日
12月2日
12月3日
12月4日
12月5日
温差x/℃
10
11
13
12
8
发芽数y
/颗
23
25
30
26
16
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程=bx+a;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个车间为了规定工时定额.需要确定加工零件所花费的时间,为此进行了10次试验.测得的数据如下:

零件数x/个
10
20
30
40
50
60
70
80
90
100
加工时间y/分
62
68
75
81
89
95
102
108
115
122
(1)y与x是否具有线性相关关系?
(2)如果y与x具有线性相关关系,求回归直线方程;
(3)根据求出的回归直线方程,预测加工200个零件所用的时间为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在某大学联盟的自主招生考试中,报考文史专业的考生参加了人文基础学科考试科目“语文”和“数学”的考试.某考场考生的两科考试成绩数据统计如下图所示,本次考试中成绩在内的记为,其中“语文”科目成绩在内的考生有10人.

(1)求该考场考生数学科目成绩为的人数;
(2)已知参加本考场测试的考生中,恰有2人的两科成绩均为.在至少一科成绩为的考生中,随机抽取2人进行访谈,求这2人的两科成绩均为的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:

 
积极参加班级工作
不太主动参加班级工作
合计
学习积极性高
18
7
25
学习积极性一般
6
19
25
合计
24
26
50
(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(2)试运用独立性检验的思想方法点拨:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由.(参考下表)
P(K2≥k)
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

 
喜爱打篮球
不喜爱打篮球
合计
男生
 
5
 
女生
10
 
 
合计
 
 
50
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,还喜欢打羽毛球,还喜欢打乒乓球,还喜欢踢足球,现在从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的8位女生中各选出1名进行其他方面的调查,求不全被选中的概率.
下面的临界值表供参考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表:

 
喜欢
不喜欢
合计
大于40岁
20
5
25
20岁至40岁
10
20
30
合计
30
25
55
(1)判断是否有99.5%的把握认为喜欢“人文景观”景点与年龄有关?
(2)用分层抽样的方法从喜欢“人文景观”景点的市民中随机抽取6人作进一步调查,将这6位市民作为一个样本,从中任选2人,求恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民的概率.
下面的临界值表供参考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

空气质量指数(单位:)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:

日均浓度






空气质量级别
一级
二级
三级
四级
五级
六级
空气质量类别


轻度污染
中度污染
重度污染
严重污染
某市日—日(天)对空气质量指数进行监测,获得数据后得到如下条形图.

(1)估计该城市一个月内空气质量类别为优的概率;
(2)从空气质量级别为三级和四级的数据中任取个,求恰好有一天空气质量类别为中度污染的概率.

查看答案和解析>>

同步练习册答案