精英家教网 > 高中数学 > 题目详情
2.若(1+$\sqrt{3}$)5=a+b$\sqrt{3}$(a,b为有理数),则b=44.

分析 由题意(1+$\sqrt{3}$)5=a+b$\sqrt{3}$(a,b为有理数),利用二项式定理求得b的值.

解答 解:由题意(1+$\sqrt{3}$)5=a+b$\sqrt{3}$(a,b为有理数),由二项式定理可得,
a=C50+C52×3+C54×9=76,b=C51+C53×3+C55×9=44,
故答案为:44.

点评 本题考查二项式定理的应用,熟练掌握二项式定理,理解方程若(1+$\sqrt{3}$)5=a+b$\sqrt{3}$(a,b为有理数)的意义是解题的关键,理解a,b的意义是本题的难点,也是求解本题的切入点,解题时能把这样的切入点找出来,解题就成功了一半,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)满足f(x+1)=2x+3,若f(m)=3,则m=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知五边形ABCDE是由直角梯形ABCD和等腰直角三角形ADE构成,如图所示,AB⊥AD,AE⊥DE,AB∥CD,且AB=2CD=2DE=4,将五边形ABCDE沿着AD折起,且使平面ABCD⊥平面ADE.
(Ⅰ)若M为DE中点,边BC上是否存在一点N,使得MN∥平面ABE?若存在,求$\frac{BN}{BC}$的值;若不存在,说明理由;
(Ⅱ)求二面角A-BE-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.从区间[0,1]随机选取三个数x,y,z,若满足x2+y2+z2>1,则记参数t=1,否则t=0,在进行1000次重复试验后,累计所有参数的和为477,由此估算圆周率π的值应为(  )
A.3.084B.3.138C.3.142D.3.136

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.2017是等差数列4,7,10,13,…的第几项(  )
A.669B.670C.671D.672

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设$f(x)=\left\{\begin{array}{l}1-{x^2},x<1\\ lnx,x≥1\end{array}\right.$,若函数g(x)=f(x)-ax-1有4不同的零点,则a的取值范围为$(0,\frac{1}{e^2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}满足:a1=4,an+1=$\frac{n+2}{n}$an+4+$\frac{4}{n}$(n∈N*),则an=5n2+n-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知圆${C_1}:{x^2}+{y^2}-2\sqrt{3}x-4y+6=0$和圆${C_2}:{x^2}+{y^2}-6y=0$,则两圆的位置关系为(  )
A.外离B.外切C.相交D.内切

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=$\left\{\begin{array}{l}{\frac{3}{4}x+\frac{5}{4},x<1}\\{{2}^{x},x≥1}\end{array}\right.$,则满足f(f(t))=2f(t)的t的取值范围是{t|t=-3或t≥-$\frac{1}{3}$}.

查看答案和解析>>

同步练习册答案