精英家教网 > 高中数学 > 题目详情
16.已知x,y均是实数,且满足(2x-1)+i=-y-(3-y)i,x与y的值(  )
A.x=$\frac{3}{2}$,y=4B.x=-$\frac{3}{2}$,y=4C.x=-$\frac{3}{2}$,y=-4D.x=$\frac{3}{2}$,y=-4

分析 利用复数相等即可得出.

解答 解:∵(2x-1)+i=-y-(3-y)i,
∴$\left\{\begin{array}{l}{2x-1=-y}\\{1=-(3-y)}\end{array}\right.$,
解得y=4,x=-$\frac{3}{2}$.
故选:B.

点评 本题考查了复数相等,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数g(x)=x2+(a-1)x+a-2a2,h(x)=(x-1)2,若不等式g(x)>0的解集为集合A,不等式h(x)<1的解集为集合B.
(1)若集合A∩B≠∅,求实数a的取值范围.
(2)已知logx[f(x)]-logx[g(x)]=1,且不等式f(x)>0的解集为集合C,若集合C∩B≠∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知F为抛物线C:y2=2px的焦点,点A(3,m)在抛物线C上,且|AF|=5.
(1)求抛物线C的方程;
(2)过点F作斜率为2的直线交抛物线C于P、Q两点,求弦PQ的中点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=$\sqrt{x}$
(Ⅰ)计算f(x)的图象在点(4,2)处的切线斜率;
(Ⅱ)求此切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.给出下列条件:
①$\vec a=\vec b$;   
②$|\vec a|=|\vec b|$;  
③$\vec a$与$\vec b$的方向相反;   
④$|\vec a|=0$或$|\vec b|=0$;
⑤$\vec a$与$\vec b$都是单位向量
其中能使$\vec a∥\vec b$成立的是①③④(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.用数学归纳法证明:1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…$\frac{1}{1+2+3+…n}$=$\frac{2n}{n+1}$ (n∈N*),由“k递推到k+1”时左端需增加的代数式是$\frac{2}{(k+1)(k+2)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若执行如图所示的程序框图,输出S的值为3,则空白菱形处填(  )
A.k<9?B.k<8?C.k<7?D.k<6?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设向量$\overrightarrow a$,$\overrightarrow b$不平行,向量λ$\overrightarrow a$+$\overrightarrow b$与$\overrightarrow a$+2$\overrightarrow b$平行,则实数λ=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若对于任意的x∈(-∞,-1],不等式(3m-1)2x<1恒成立,则正实数m的取值范围是(0,1).

查看答案和解析>>

同步练习册答案