·ÖÎö £¨I£©Çó³öÇúÏßC2µÄÆÕͨ·½³Ì£¬½«Ö±ÏßC1µÄ²ÎÊý·½³Ì´úÈëC2µÄÆÕͨ·½³Ì£¬ÀûÓòÎÊýµÄ¼¸ºÎÒâÒåºÍ¸ùÓëϵÊýµÄ¹ØÏµÇó³ö|AB|£»
£¨II£©Çó³öPµ½Ô²C2µÄÔ²ÐĵľàÀëºÍÔ²µÄ°ë¾¶r£¬ÅжÏPÓëÔ²µÄλÖùØÏµ£¬¸ù¾ÝλÖùØÏµµÃ³ö×î´óÖµºÍ×îСֵ£®
½â´ð ½â£º£¨I£©µ±¦Á=$\frac{3¦Ð}{4}$ʱ£¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®
¡ßÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ+$\frac{9}{¦Ñ}$=4cos¦È-6sin¦È£¬¼´¦Ñ2-4¦Ñcos¦È+6¦Ñsin¦È+9=0£®
¡àÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪx2+y2-4x+6y+9=0£¬
°Ñ$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$´úÈëx2+y2-4x+6y+9=0£¬ÕûÀíµÃt2+7$\sqrt{2}$t+21=0£¬
¡àt1+t2=-7$\sqrt{2}$£¬t1t2=21£®
¡à|AB|=|t1-t2|=$\sqrt{£¨{t}_{1}+{t}_{2}£©^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{14}$£®
£¨II£©P£¨-1£¬1£©£¬ÇúÏßC2µÄ±ê×¼·½³ÌΪ£¨x-2£©2+£¨y+3£©2=4£¬
¡àÇúÏßC2±íʾԲÐÄΪM£¨2£¬-3£©£¬°ë¾¶Îª2µÄÔ²£®
¡àPM=$\sqrt{£¨2+1£©^{2}+£¨-3-1£©^{2}}$=5£¬
¡à3¡Ü|PQ|¡Ü7£®
µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì£¬¼«×ø±ê·½³ÌÓëÆÕͨ·½³ÌµÄת»¯£¬Ö±ÏßÓëÔ²£¬µãÓëÔ²µÄλÖùØÏµ£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | P£¨£¨A1+A2£©|$\overline{B}$£©=P£¨A1|$\overline{B}$£©+P£¨A2|$\overline{B}$£© | B£® | P£¨A1B+A2B£©=P£¨A1B£©+P£¨A2B£© | ||
| C£® | P£¨A1+A2£©=P£¨A1|B£©+P£¨A2|B£© | D£® | P£¨B£©=P£¨A1£©P£¨B|A1£©+P£¨A2£©P£¨B|A2£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{x^2}{4}+\frac{y^2}{3}=1$ | B£® | $\frac{x^2}{4}+{y^2}=1$ | C£® | $\frac{x^2}{4}-\frac{y^2}{3}=1$ | D£® | $\frac{x^2}{4}-{y^2}=1$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $[{\frac{{\sqrt{3}}}{2}£¬1}]$ | B£® | $[{\sqrt{3}£¬2}]$ | C£® | $[{\frac{{\sqrt{5}}}{2}£¬\frac{{\sqrt{6}}}{2}}]$ | D£® | $[{\sqrt{5}£¬\sqrt{6}}]$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com