19£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1£º$\left\{\begin{array}{l}{x=-1+tcos¦Á}\\{1+tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£¬ÆäÖÐ0¡Ü¦Á£¼¦Ð£©£®ÒÔOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2£º¦Ñ+$\frac{9}{¦Ñ}$=4cos¦È-6sin¦È£¨¦Ñ£¾0£©
£¨I£©µ±¦Á=$\frac{3¦Ð}{4}$ʱ£¬ÉèÇúÏßC1ÓëC2½»ÓÚA¡¢BÁ½µã£¬Çó|AB|£»
£¨¢ò£©ÒÑÖªÇúÏßC1¹ý¶¨µãP£¬QÊÇÇúÏßC2Éϵ͝µã£¬Çó|PQ|µÄȡֵ·¶Î§£®

·ÖÎö £¨I£©Çó³öÇúÏßC2µÄÆÕͨ·½³Ì£¬½«Ö±ÏßC1µÄ²ÎÊý·½³Ì´úÈëC2µÄÆÕͨ·½³Ì£¬ÀûÓòÎÊýµÄ¼¸ºÎÒâÒåºÍ¸ùÓëϵÊýµÄ¹ØÏµÇó³ö|AB|£»
£¨II£©Çó³öPµ½Ô²C2µÄÔ²ÐĵľàÀëºÍÔ²µÄ°ë¾¶r£¬ÅжÏPÓëÔ²µÄλÖùØÏµ£¬¸ù¾ÝλÖùØÏµµÃ³ö×î´óÖµºÍ×îСֵ£®

½â´ð ½â£º£¨I£©µ±¦Á=$\frac{3¦Ð}{4}$ʱ£¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®
¡ßÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ+$\frac{9}{¦Ñ}$=4cos¦È-6sin¦È£¬¼´¦Ñ2-4¦Ñcos¦È+6¦Ñsin¦È+9=0£®
¡àÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪx2+y2-4x+6y+9=0£¬
°Ñ$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$´úÈëx2+y2-4x+6y+9=0£¬ÕûÀíµÃt2+7$\sqrt{2}$t+21=0£¬
¡àt1+t2=-7$\sqrt{2}$£¬t1t2=21£®
¡à|AB|=|t1-t2|=$\sqrt{£¨{t}_{1}+{t}_{2}£©^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{14}$£®
£¨II£©P£¨-1£¬1£©£¬ÇúÏßC2µÄ±ê×¼·½³ÌΪ£¨x-2£©2+£¨y+3£©2=4£¬
¡àÇúÏßC2±íʾԲÐÄΪM£¨2£¬-3£©£¬°ë¾¶Îª2µÄÔ²£®
¡àPM=$\sqrt{£¨2+1£©^{2}+£¨-3-1£©^{2}}$=5£¬
¡à3¡Ü|PQ|¡Ü7£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì£¬¼«×ø±ê·½³ÌÓëÆÕͨ·½³ÌµÄת»¯£¬Ö±ÏßÓëÔ²£¬µãÓëÔ²µÄλÖùØÏµ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®0£¼P£¨B£©£¼1£¬ÇÒP£¨£¨A1+A2£©|B£©=P£¨A1|B£©+P£¨A2|B£©£¬ÔòÏÂÁÐÑ¡ÏîÖУ¬³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®P£¨£¨A1+A2£©|$\overline{B}$£©=P£¨A1|$\overline{B}$£©+P£¨A2|$\overline{B}$£©B£®P£¨A1B+A2B£©=P£¨A1B£©+P£¨A2B£©
C£®P£¨A1+A2£©=P£¨A1|B£©+P£¨A2|B£©D£®P£¨B£©=P£¨A1£©P£¨B|A1£©+P£¨A2£©P£¨B|A2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Éèx£¾0£®
£¨1£©Ö¤Ã÷£º${e^x}£¾1+x+\frac{1}{2}{x^2}$£»
£¨2£©Èô${e^x}=1+x+\frac{1}{2}{x^2}{e^y}$£¬Ö¤Ã÷£º0£¼y£¼x£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªÔ²C£º£¨x-1£©2+y2=16¼°Ô²ÄÚÒ»µãA£¨-1£¬0£©£¬PÊÇÔ²ÉÏÈÎÒâÒ»µã£®Ïß¶ÎAPµÄ´¹Ö±Æ½·ÖÏßlºÍ°ë¾¶CPÏཻÓÚµãQ£¬µ±µãPÔÚÔ²ÉÏÔ˶¯Ê±£¬ÔòµãQµÄ¹ì¼£·½³ÌΪ£¨¡¡¡¡£©
A£®$\frac{x^2}{4}+\frac{y^2}{3}=1$B£®$\frac{x^2}{4}+{y^2}=1$C£®$\frac{x^2}{4}-\frac{y^2}{3}=1$D£®$\frac{x^2}{4}-{y^2}=1$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Óë¡ÑD£º£¨x+1£©2+£¨y-2£©2=$\frac{1}{2}$ÏàÇÐÇÒÔÚÁ½×ø±êÖáÉϵĽؾàÏàµÈµÄÖ±ÏßµÄÌõÊýÓУ¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖª·½³Ì$\left\{\begin{array}{l}{x=t+\frac{s}{t}}\\{y=t-\frac{s}{t}}\end{array}\right.$£¨s£¬t¡ÊR£¬ÇÒs£¾0£¬t£¾0£©£®ÈôÒÔsΪ³£Êý¡¢tΪ²ÎÊýµÄ·½³Ì±íʾÇúÏßC1£»ÒÔtΪ³£Êý¡¢sΪ²ÎÊýµÄ·½³Ì±íʾÇúÏßC2£¬ÄÇôC1£¬C2ÒÀ´ÎΪ˫ÇúÏߣ¬Ö±Ïߣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Ö¤Ã÷£º$\frac{1}{2¡Á3}+\frac{1}{3¡Á5}+¡­+\frac{1}{£¨n+1£©£¨2n+1£©}£¼\frac{5}{12}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$ÓëÖ±Ïßx-y=1½»ÓÚP¡¢QÁ½µã£¬ÇÒOP¡ÍOQ£¬ÆäOÎª×ø±êÔ­µã£®Èô$\frac{{\sqrt{2}}}{2}a¡Üb¡Ü\frac{{\sqrt{6}}}{3}a$£¬Ôòaȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$[{\frac{{\sqrt{3}}}{2}£¬1}]$B£®$[{\sqrt{3}£¬2}]$C£®$[{\frac{{\sqrt{5}}}{2}£¬\frac{{\sqrt{6}}}{2}}]$D£®$[{\sqrt{5}£¬\sqrt{6}}]$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=1£¬an+1=2an+1£¨n¡ÊN+£©
£¨1£©Çóa2£¬a3£¬a4£¬a5£»
£¨2£©¹éÄɲÂÏë³öͨÏʽan£¬²¢ÇÒÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸