9£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=2+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$£¨tΪ²ÎÊý£¬t¡ÊR£©£®ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬Ô²CµÄ·½³ÌΪ¦Ñ=4sin¦È£®
£¨¢ñ£©ÇóÔ²CµÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèÔ²CÓëÖ±Ïßl½»ÓÚµãA£¬B£¬ÈôµãPµÄ×ø±êΪ£¨1£¬2£©£¬Çó|PA|+|PB|£®

·ÖÎö £¨¢ñ£©¦Ñ=4sin¦È¿ÉÒÔ»¯Îª¦Ñ2=4¦Ñsin¦È£¬ÀûÓû¥»¯¹«Ê½¼´¿ÉµÃ³öÖ±½Ç×ø±ê·½³Ì£®
£¨¢ò£©Ö±Ïßl¹ýµãP£¬ÇÒPÔÚÔ²CÄÚ£¬¿ÉµÃ|PA|+|PB|=|AB|£®
£¨·¨Ò»£©°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³ÌΪx-y+1=0£¬Çó³öÔ²ÐÄ£¨0£¬2£©µ½Ö±ÏßlµÄ¾àÀëd£¬ÀûÓÃÏÒ³¤¹«Ê½|AB|=2$\sqrt{{r}^{2}-{d}^{2}}$£®
£¨·¨¶þ£©°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì´úÈëx2+y2-4y=0ÖУ¬¿ÉµÃ${t^2}-\sqrt{2}t-3=0$£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¡¢ÏÒ³¤¹«Ê½¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨¢ñ£©¦Ñ=4sin¦È¿ÉÒÔ»¯Îª¦Ñ2=4¦Ñsin¦È£¬¼´x2+y2-4y=0£¬Ô²ÐÄΪ£¨0£¬2£©£¬°ë¾¶Îª2£®
£¨¢ò£©Ö±Ïßl¹ýµãP£¬ÇÒPÔÚÔ²CÄÚ£¬ËùÒÔ|PA|+|PB|=|AB|£®
£¨·¨Ò»£©$\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=2+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$»¯ÎªÖ±½Ç×ø±ê·½³ÌΪx-y+1=0£¬
Ô²ÐÄ£¨0£¬2£©µ½Ö±ÏßlµÄ¾àÀëΪ$\frac{|0-2+1|}{{\sqrt{2}}}=\frac{{\sqrt{2}}}{2}$£¬ËùÒÔ$|AB|=2\sqrt{{2^2}-{{£¨\frac{{\sqrt{2}}}{2}£©}^2}}=\sqrt{14}$£®
£¨·¨¶þ£© $\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=2+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$£¬´úÈëx2+y2-4y=0ÖУ¬
¿ÉµÃ${t^2}-\sqrt{2}t-3=0$£¬Éè¸Ã·½³ÌÁ½¸ö¸ùΪt1£¬t2£¬
¡àt1+t2=$\sqrt{2}$£¬t1t2=-3£®
Ôò|AB|=|t1-t2|=$\sqrt{£¨{t}_{1}+{t}_{2}£©^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{2-4¡Á£¨-3£©}$=$\sqrt{14}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Ö±Ïß²ÎÊý·½³ÌµÄÓ¦Óᢵ㵽ֱÏߵľàÀ빫ʽ¡¢ÏÒ³¤¹«Ê½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖª»ý·Ö¹ÀÖµ¶¨Àí£ºÈç¹ûº¯Êýf£¨x£©ÔÚ[a£¬b]£¨a£¼b£©ÉϵÄ×î´óÖµºÍ×îСֵ·Ö±ðΪM£¬m£¬ÄÇôm£¨b-a£©¡Ü$\int_a^b$f£¨x£©dx¡ÜM£¨b-a£©£¬¸ù¾ÝÉÏÊö¶¨Àí£¬¶¨»ý·Ö$\int_{-1}^2{{2^{-{x^2}}}}$dxµÄ¹ÀÖµ·¶Î§ÊÇ[$\frac{3}{16}$£¬3]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬¡÷ABCÖУ¬sin$\frac{1}{2}$¡ÏABC=$\frac{{\sqrt{3}}}{3}$£¬AB=2£¬µãDΪÏß¶ÎACÉÏÒ»µã£¬¹ýD×÷DE´¹Ö±ÓÚABÓëE£¬×÷DF´¹Ö±ÓÚBCÓëF£®
£¨1£©ÈôAD=2DC£¬ÔòBD=$\frac{{4\sqrt{3}}}{3}$£¬ÇóBCµÄ³¤£®
£¨2£©ÔÚ£¨1£©µÄ½áÂÛÏ£¬ÈôµãDΪÏß¶ÎACÉÏÔ˶¯£¬Çó¡÷DEFÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®º¯Êýf£¨x£©=ln£¨2x-x2£©µÄµ¥µ÷µÝ¼õÇø¼äΪ£¨1£¬2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÓàÏÒº¯ÊýÊÇżº¯Êý£¬f£¨x£©=cos£¨x+2£©ÊÇÓàÏÒº¯Êý£¬Òò´Ëf£¨x£©=cos£¨x+2£©ÊÇżº¯Êý£¬ÒÔÉÏÍÆÀí£¨¡¡¡¡£©
A£®½áÂÛÕýÈ·B£®´óǰÌá²»ÕýÈ·C£®Ð¡Ç°Ìá²»ÕýÈ·D£®È«²»ÕýÈ·

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÎªÁ˽âÐķμ²²¡ÊÇ·ñÓëÄêÁäÏà¹Ø£¬ÏÖËæ»ú³éÈ¡ÁË40ÃûÊÐÃñ£¬µÃµ½Êý¾ÝÈç±í£º
ÒÑÖªÔÚÈ«²¿µÄ40ÈËÖÐËæ»ú³éÈ¡1ÈË£¬³éµ½²»»¼Ðķμ²²¡µÄ¸ÅÂÊΪ$\frac{2}{5}$
»¼Ðķμ²²¡²»»¼Ðķμ²²¡ºÏ¼Æ
´óÓÚ40Ëê16
СÓÚµÈÓÚ40Ëê12
ºÏ¼Æ40
£¨1£©Ç뽫2¡Á2ÁÐÁª±í²¹³äÍêÕû£»
£¨3£©ÄÜ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.01µÄǰÌáÏÂÈÏΪ»¼Ðķμ²²¡ÓëÄêÁäÓйأ¿
ÏÂÃæµÄÁÙ½çÖµ±í¹©²Î¿¼£º
P£¨K2¡Ýk£©0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
£¨²Î¿¼¹«Ê½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èç¹ûÖ´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÔòÊä³öµÄÊýµÈÓÚ40£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Èôº¯Êýf£¨x£©=x2+$\frac{2}{x}$-alnx£¨a£¾0£©ÓÐΨһÁãµãx0£¬ÇÒm£¼x0£¼n£¨m£¬nΪÏàÁÚÕûÊý£©£¬Ôòm+nµÄֵΪ£¨¡¡¡¡£©
A£®1B£®3C£®5D£®7

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªg£¨x£©=$\frac{1}{x}$£¬f£¨x£©=2x+1£¬x¡Ê£¨-1£¬2£©£¬Çóf[g£¨x£©]µÄ¶¨ÒåÓò£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸