精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=lnx+$\frac{1}{2}$ax2+x,a∈R
(Ⅰ)若f(1)=0,求函数f(x)的最大值;
(Ⅱ)令g(x)=f(x)-ax2-ax+1,讨论函数g(x)的单调区间;
(Ⅲ)若a=4,正实数x1,x2满足f(x1)+f(x2)+3x1x2=0,证明x1+x2≥$\frac{1}{2}$.

分析 (Ⅰ)用f(1)=0,确定a的值,求导函数,确定函数的单调性,即可求函数f(x)的最大值;
(Ⅱ)利用导数的正负,分类讨论,即可讨论函数g(x)的单调区间;
(Ⅲ)将代数式f(x1)+f(x2)+3x1x2放缩,构造关于x1+x2的一元二次不等式,解不等式即可.

解答 解:(Ⅰ)∵f(x)=lnx+$\frac{1}{2}$ax2+x,f(1)=0,
∴a=-2,且x>0.
∴f(x)=lnx-x2+x,
∴f′(x)=-$\frac{2{x}^{2}-x-1}{x}$,
当f′(x)<0,即x>1时,函数f(x)的单调递减,当f′(x)>0,即0<x<1时,函数f(x)的单调递增,
∴x=1时,函数f(x)取得极大值,也是最大值0;
(Ⅱ)g(x)=f(x)-ax2-ax+1=lnx-$\frac{1}{2}$ax2+(1-a)x+1,
所以g′(x)=$\frac{1}{x}$-ax+(1-a)=$\frac{-a{x}^{2}+(1-a)x+1}{x}$,
当a≤0时,因为x>0,所以g′(x)>0.
所以g(x)在(0,+∞)上是递增函数,
当a>0时,g′(x)=0,得x=$\frac{1}{a}$,
所以当x∈(0,$\frac{1}{a}$)时,g′(x)>0;当x∈($\frac{1}{a}$,+∞)时,g′(x)<0,
因此函数g(x)在x∈(0,$\frac{1}{a}$)是增函数,在($\frac{1}{a}$,+∞)是减函数.
综上,当a≤0时,函数g(x)的递增区间是(0,+∞),无递减区间;
当a>0时,函数g(x)的递增区间是(0,$\frac{1}{a}$),递减区间是($\frac{1}{a}$,+∞).
证明:(Ⅲ)∵a=4,
∴f(x)=lnx+2x2+x,
∴f(x1)+f(x2)+3x1x2=lnx1+2x12+x1+lnx2+2x22+3x1x2+x2
=2(x1+x22+x1+x2+lnx1x2-x1x2
令g(x)=lnx-x,则g′(x)=$\frac{1}{x}$-1,
∴0<x<1时,g′(x)>0,g(x)单调递增,
x>1时,g′(x)<0,g(x)单调递减,
∴g(x)max=g(1)=-1,
∴f(x1)+f(x2)+3x1x2≤2(x1+x22+(x1+x2)-1,
即2(x1+x22+(x1+x2)-1≥0,
又∵x1,x2是正实数,
∴x1+x2≥$\frac{1}{2}$.

点评 本题难度较大,属于利用导数研究函数的单调性、最值,以及利用导数证明单调性进一步研究不等式问题的题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设函数f(x)的定义域为R,f(x)=$\left\{\begin{array}{l}{x,0≤x≤1}\\{(\frac{1}{2})^{x}-1,-1≤x<0}\end{array}\right.$,且对任意的x∈R都有f(x+1)=f(x-1),若在区间[-1,3]上函数g(x)=f(x)-mx-m恰有三个不同零点,则实数m的取值范围是(  )
A.(0,$\frac{1}{4}$]B.($\frac{1}{4}$,$\frac{1}{2}$)C.(0,$\frac{1}{2}$]D.[$\frac{1}{4}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ex(x2-3).
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求函数y=f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知a,b均为大于1的自然数,若圆心在原点的单位圆O上存在点(x0,y0),使得b+x0=a(b+y0)成立.则a+b=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若圆C:(x-$\frac{5}{2}$)2+(y-2)2=$\frac{25}{4}$上有4个点到直线x-y+a=0的距离为$\frac{1}{2}$,则实数a的取值范围为(  )
A.(-2$\sqrt{2}$-$\frac{1}{2}$,2$\sqrt{2}$-$\frac{1}{2}$)B.[-2$\sqrt{2}$-$\frac{1}{2}$,2$\sqrt{2}$-$\frac{1}{2}$]C.(-$\sqrt{2}$-$\frac{1}{2}$,$\sqrt{2}$-$\frac{1}{2}$)D.[-$\sqrt{2}$-$\frac{1}{2}$,$\sqrt{2}$-$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,设点A(-1,2)在矩阵$M=[{\begin{array}{l}{-1}&0\\ 0&1\end{array}}]$对应的变换作用下得到点A′,将点B(3,4)绕点A′逆时针旋转90°得到点B′,求点B′的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知定义在[-$\frac{π}{2}$,$\frac{π}{2}$]的函数f(x)=sinx(cosx+1)-ax,若y=f(x)仅有一个零点,则实数a的取值范围是(  )
A.($\frac{2}{π}$,2]B.(-∞,$\frac{2}{π}$)∪[2,+∞)C.[-$\frac{1}{2}$,$\frac{2}{π}$)D.(-∞,-$\frac{1}{2}$]∪($\frac{2}{π}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)求过原点且倾斜有为60°的直线被圆x2+y2-4y=0所截得的弦长.
(2)解不等式x+|2x+3|≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=1+|2x-3|.
(1)求不等式f(x)≥|3x+1|的解集;
(2)若不等式f(x)-tx≥0的解集非空,求t的取值范围.

查看答案和解析>>

同步练习册答案