分析 (Ⅰ)用f(1)=0,确定a的值,求导函数,确定函数的单调性,即可求函数f(x)的最大值;
(Ⅱ)利用导数的正负,分类讨论,即可讨论函数g(x)的单调区间;
(Ⅲ)将代数式f(x1)+f(x2)+3x1x2放缩,构造关于x1+x2的一元二次不等式,解不等式即可.
解答 解:(Ⅰ)∵f(x)=lnx+$\frac{1}{2}$ax2+x,f(1)=0,
∴a=-2,且x>0.
∴f(x)=lnx-x2+x,
∴f′(x)=-$\frac{2{x}^{2}-x-1}{x}$,
当f′(x)<0,即x>1时,函数f(x)的单调递减,当f′(x)>0,即0<x<1时,函数f(x)的单调递增,
∴x=1时,函数f(x)取得极大值,也是最大值0;
(Ⅱ)g(x)=f(x)-ax2-ax+1=lnx-$\frac{1}{2}$ax2+(1-a)x+1,
所以g′(x)=$\frac{1}{x}$-ax+(1-a)=$\frac{-a{x}^{2}+(1-a)x+1}{x}$,
当a≤0时,因为x>0,所以g′(x)>0.
所以g(x)在(0,+∞)上是递增函数,
当a>0时,g′(x)=0,得x=$\frac{1}{a}$,
所以当x∈(0,$\frac{1}{a}$)时,g′(x)>0;当x∈($\frac{1}{a}$,+∞)时,g′(x)<0,
因此函数g(x)在x∈(0,$\frac{1}{a}$)是增函数,在($\frac{1}{a}$,+∞)是减函数.
综上,当a≤0时,函数g(x)的递增区间是(0,+∞),无递减区间;
当a>0时,函数g(x)的递增区间是(0,$\frac{1}{a}$),递减区间是($\frac{1}{a}$,+∞).
证明:(Ⅲ)∵a=4,
∴f(x)=lnx+2x2+x,
∴f(x1)+f(x2)+3x1x2=lnx1+2x12+x1+lnx2+2x22+3x1x2+x2
=2(x1+x2)2+x1+x2+lnx1x2-x1x2
令g(x)=lnx-x,则g′(x)=$\frac{1}{x}$-1,
∴0<x<1时,g′(x)>0,g(x)单调递增,
x>1时,g′(x)<0,g(x)单调递减,
∴g(x)max=g(1)=-1,
∴f(x1)+f(x2)+3x1x2≤2(x1+x2)2+(x1+x2)-1,
即2(x1+x2)2+(x1+x2)-1≥0,
又∵x1,x2是正实数,
∴x1+x2≥$\frac{1}{2}$.
点评 本题难度较大,属于利用导数研究函数的单调性、最值,以及利用导数证明单调性进一步研究不等式问题的题型.
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{4}$] | B. | ($\frac{1}{4}$,$\frac{1}{2}$) | C. | (0,$\frac{1}{2}$] | D. | [$\frac{1}{4}$,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2$\sqrt{2}$-$\frac{1}{2}$,2$\sqrt{2}$-$\frac{1}{2}$) | B. | [-2$\sqrt{2}$-$\frac{1}{2}$,2$\sqrt{2}$-$\frac{1}{2}$] | C. | (-$\sqrt{2}$-$\frac{1}{2}$,$\sqrt{2}$-$\frac{1}{2}$) | D. | [-$\sqrt{2}$-$\frac{1}{2}$,$\sqrt{2}$-$\frac{1}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{2}{π}$,2] | B. | (-∞,$\frac{2}{π}$)∪[2,+∞) | C. | [-$\frac{1}{2}$,$\frac{2}{π}$) | D. | (-∞,-$\frac{1}{2}$]∪($\frac{2}{π}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com