精英家教网 > 高中数学 > 题目详情
11.若圆C:(x-$\frac{5}{2}$)2+(y-2)2=$\frac{25}{4}$上有4个点到直线x-y+a=0的距离为$\frac{1}{2}$,则实数a的取值范围为(  )
A.(-2$\sqrt{2}$-$\frac{1}{2}$,2$\sqrt{2}$-$\frac{1}{2}$)B.[-2$\sqrt{2}$-$\frac{1}{2}$,2$\sqrt{2}$-$\frac{1}{2}$]C.(-$\sqrt{2}$-$\frac{1}{2}$,$\sqrt{2}$-$\frac{1}{2}$)D.[-$\sqrt{2}$-$\frac{1}{2}$,$\sqrt{2}$-$\frac{1}{2}$]

分析 由条件求出圆心,求出半径,由数形结合,只需圆心到直线的距离圆心到直线的距离小于半径和$\frac{1}{2}$的差即可.

解答 解:圆C:(x-$\frac{5}{2}$)2+(y-2)2=$\frac{25}{4}$的圆心为C($\frac{5}{2}$,2),半径等于$\frac{5}{2}$,圆心到直线的距离d=$\frac{|\frac{1}{2}+a|}{\sqrt{2}}$,
要使圆C:(x-$\frac{5}{2}$)2+(y-2)2=$\frac{25}{4}$上有4个点到直线x-y+a=0的距离为$\frac{1}{2}$,应有 $\frac{|\frac{1}{2}+a|}{\sqrt{2}}$<$\frac{5}{2}$-$\frac{1}{2}$,
即-2$\sqrt{2}$-$\frac{1}{2}$<a<2$\sqrt{2}$-$\frac{1}{2}$,
故选:A.

点评 本题考查圆与直线的位置关系,判断圆心到直线的距离d小于半径与$\frac{1}{2}$的差,是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在菱形ABCD中,对角线AC与BD相交于点O,AB=5,AC=8(如图).如果点E在对角线AC上,且DE=4.
(1)求AE的长;
(2)设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{DE}$=$\overrightarrow{c}$,试用向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$表示下列向量:$\overrightarrow{BC}$,$\overrightarrow{AE}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知平面四边形ABCD中,DA=AB=BC,AB⊥AD,∠ABC=135°,现沿对角线BD将△ABD折起,使平面ABD⊥平面CBD
(Ⅰ)求证:AD⊥平面ABC;
(II)在线段AC上是否存在一个点P,使得直线DP和平面ABC所成角为60°?若存在,确定点P的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆O:x2+y2=4和点$M({1,\sqrt{2}})$,AB为过点M的弦.
(Ⅰ)若$|AB|=2\sqrt{3}$,求直线AB的方程;
(Ⅱ)求弦AB的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=lnx.
(I)求函数g(x)=x-1-f(x)的极小值;
(Ⅱ)若关于x的不等式mf(x)≥$\frac{x-1}{x+1}$在[1,+∞)上恒成立,求实数m的取值范围;
(Ⅲ)已知a∈(0,$\frac{π}{2}$),试比较f(tana)与-cos2a的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lnx+$\frac{1}{2}$ax2+x,a∈R
(Ⅰ)若f(1)=0,求函数f(x)的最大值;
(Ⅱ)令g(x)=f(x)-ax2-ax+1,讨论函数g(x)的单调区间;
(Ⅲ)若a=4,正实数x1,x2满足f(x1)+f(x2)+3x1x2=0,证明x1+x2≥$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的焦距为2$\sqrt{3}$,离心率为$\frac{\sqrt{3}}{2}$.
(1)求椭圆C的方程;
(2)若M,N,P是椭圆C上不同的三点,且满足$\overrightarrow{OM}+λ\overrightarrow{ON}=\overrightarrow{OP}$(O为坐标原点),求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若关于x的方程x2+$\frac{2a{x}^{2}}{{x}^{2}+1}$+a2-1=0有唯一解,则实数a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知命题p:方程x2+mx+1=0有两个不相等的负实根,命题q:函数y=x2-2mx-3在区间(1,3)上有最小值.若“p或q”为真,而“p且q”为假,求实数m取值范围.

查看答案和解析>>

同步练习册答案