精英家教网 > 高中数学 > 题目详情
20.若关于x的方程x2+$\frac{2a{x}^{2}}{{x}^{2}+1}$+a2-1=0有唯一解,则实数a的值为1.

分析 令f(x)=x2+$\frac{2a{x}^{2}}{{x}^{2}+1}$+a2-1,则函数是偶函数,关于x的方程x2+$\frac{2a{x}^{2}}{{x}^{2}+1}$+a2-1=0有唯一解,可得f(0)=0,即可求出实数a的值,注意检验.

解答 解:令f(x)=x2+$\frac{2a{x}^{2}}{{x}^{2}+1}$+a2-1,则函数是偶函数,
∵关于x的方程x2+$\frac{2a{x}^{2}}{{x}^{2}+1}$+a2-1=0有唯一解,
∴f(0)=0+0+a2-1=0,
∴a=1或-1,
当a=1时,x2+$\frac{2a{x}^{2}}{{x}^{2}+1}$+a2-1=0的解为0;
当a=-1时,x2+$\frac{2a{x}^{2}}{{x}^{2}+1}$+a2-1=0的解为0,-1,1.
故a=1符合题意(-1舍去).
故答案为:1.

点评 本题考查方程有解的条件,注意运用函数的奇偶性,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.定义:区间[x1,x2](x1<x2)的长度为x2-x1,若函数y=|log2$\frac{x}{2}$|的定义域为[m,n],值域为[0,2],则区间[m,n]长度的最小值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若圆C:(x-$\frac{5}{2}$)2+(y-2)2=$\frac{25}{4}$上有4个点到直线x-y+a=0的距离为$\frac{1}{2}$,则实数a的取值范围为(  )
A.(-2$\sqrt{2}$-$\frac{1}{2}$,2$\sqrt{2}$-$\frac{1}{2}$)B.[-2$\sqrt{2}$-$\frac{1}{2}$,2$\sqrt{2}$-$\frac{1}{2}$]C.(-$\sqrt{2}$-$\frac{1}{2}$,$\sqrt{2}$-$\frac{1}{2}$)D.[-$\sqrt{2}$-$\frac{1}{2}$,$\sqrt{2}$-$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知定义在[-$\frac{π}{2}$,$\frac{π}{2}$]的函数f(x)=sinx(cosx+1)-ax,若y=f(x)仅有一个零点,则实数a的取值范围是(  )
A.($\frac{2}{π}$,2]B.(-∞,$\frac{2}{π}$)∪[2,+∞)C.[-$\frac{1}{2}$,$\frac{2}{π}$)D.(-∞,-$\frac{1}{2}$]∪($\frac{2}{π}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(x2+ax-2a-3)ex,其中a∈R,e=2.71828…为自然对数的底数.
(1)讨论函数f(x)的单调性;
(2)当x∈[0,1]时,若函数f(x)的图象恒在直线y=e的上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)求过原点且倾斜有为60°的直线被圆x2+y2-4y=0所截得的弦长.
(2)解不等式x+|2x+3|≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,平行四边形ABCD中,M为DC的中点,N是BC的中点,设$\overrightarrow{AB}$=$\overrightarrow{b}$,$\overrightarrow{AD}$=$\overrightarrow{d}$,$\overrightarrow{AM}$=$\overrightarrow{m}$,$\overrightarrow{AN}$=$\overrightarrow{n}$.
(1)试以$\overrightarrow{b}$,$\overrightarrow{d}$为基底表示$\overrightarrow{MN}$;
(2)试以$\overrightarrow{m}$,$\overrightarrow{n}$为基底表示$\overrightarrow{AB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.正方体ABCD-A1B1C1D1中,M,N,Q分别是棱D1C1,A1D1,BC的中点,点P在对角线BD1上,给出以下命题:
①当P在BD1上运动时,恒有MN∥面APC;
②若A,P,M三点共线,则$\frac{BP}{B{D}_{1}}$=$\frac{2}{3}$;
③若$\frac{BP}{B{D}_{1}}$=$\frac{2}{3}$,则C1Q∥面APC;
④若过点P且与正方体的十二条棱所成的角都相等的直线有m条;过点P且与直线AB1和A1C1所成的角都为60°的直线有n条,则m+n=7.
其中正确命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.2x-1的值是否可以同时大于x-5和3x+1的值?请说明理由.

查看答案和解析>>

同步练习册答案