9£®Õý·½ÌåABCD-A1B1C1D1ÖУ¬M£¬N£¬Q·Ö±ðÊÇÀâD1C1£¬A1D1£¬BCµÄÖе㣬µãPÔÚ¶Ô½ÇÏßBD1ÉÏ£¬¸ø³öÒÔÏÂÃüÌ⣺
¢Ùµ±PÔÚBD1ÉÏÔ˶¯Ê±£¬ºãÓÐMN¡ÎÃæAPC£»
¢ÚÈôA£¬P£¬MÈýµã¹²Ïߣ¬Ôò$\frac{BP}{B{D}_{1}}$=$\frac{2}{3}$£»
¢ÛÈô$\frac{BP}{B{D}_{1}}$=$\frac{2}{3}$£¬ÔòC1Q¡ÎÃæAPC£»
¢ÜÈô¹ýµãPÇÒÓëÕý·½ÌåµÄÊ®¶þÌõÀâËù³ÉµÄ½Ç¶¼ÏàµÈµÄÖ±ÏßÓÐmÌõ£»¹ýµãPÇÒÓëÖ±ÏßAB1ºÍA1C1Ëù³ÉµÄ½Ç¶¼Îª60¡ãµÄÖ±ÏßÓÐnÌõ£¬Ôòm+n=7£®
ÆäÖÐÕýÈ·ÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

·ÖÎö ¢ÙMNÖеãR£¬ACµÄÖеãS£¬ÉèBD1ÓëRSµÄ½»µãÊÇQ£¬ÈôPÓëQÖØºÏʱ£¬´ËʱMNÔÚÆ½ÃæPACÄÚ£¬¼´¿ÉÅжϳöÕýÎó£»
¢ÚÈôA£¬P£¬MÈýµã¹²Ïߣ¬ÓÉD1M¡ÎAB£¬ÓÉÆ½ÐÐÏßµÄÐÔÖʿɵã¬$\frac{{D}_{1}P}{BP}$=$\frac{{D}_{1}M}{AB}$=$\frac{1}{2}$£¬¼´¿ÉÅжϳöÕýÎó£»
¢ÛÈô$\frac{BP}{B{D}_{1}}$=$\frac{2}{3}$£¬ÓɢڿɵãºA£¬P£¬MÈýµã¹²Ïߣ¬Éè¶Ô½ÇÏßBD¡ÉAC=O£¬¿ÉµÃËıßÐÎOQC1MÊÇÆ½ÐÐËıßÐΣ¬ÓÚÊÇC1Q¡ÎOM£¬¼´¿ÉÅжϳöÕýÎó£®
¢ÜÈô¹ýµãPÇÒÓëÕý·½ÌåµÄÊ®¶þÌõÀâËù³ÉµÄ½Ç¶¼ÏàµÈµÄÖ±ÏßÓÐA1C£¬D1B£¬AC1£¬DB1£¬4Ìõ£®¹ýµãPÇÒÓëÖ±ÏßAB1ºÍA1C1Ëù³ÉµÄ½Ç¶¼Îª60¡ãµÄÖ±ÏßÓÐÇÒÖ»ÓÐ3Ìõ£¬¼´¿ÉÅжϳöÕýÎó£®

½â´ð ½â£º¢ÙMNÖеãR£¬ACµÄÖеãS£¬ÉèBD1ÓëRSµÄ½»µãÊÇQ£¬ÈôPÓëQÖØºÏʱ£¬´ËʱMNÔÚÆ½ÃæPACÄÚ£¬¹Ê1´íÎó
¢ÚÈôA£¬P£¬MÈýµã¹²Ïߣ¬¢ÚÈôA£¬P£¬MÈýµã¹²Ïߣ¬ÓÉD1M¡ÎAB£¬
¡à$\frac{{D}_{1}P}{BP}$=$\frac{{D}_{1}M}{AB}$=$\frac{1}{2}$£¬Ôò$\frac{BP}{B{D}_{1}}$=$\frac{2}{3}$£¬ÕýÈ·£»
¢ÛÈô$\frac{BP}{B{D}_{1}}$=$\frac{2}{3}$£¬ÓɢڿɵãºA£¬P£¬MÈýµã¹²Ïߣ¬Éè¶Ô½ÇÏßBD¡ÉAC=O£¬Á¬½ÓOM£¬OQ£¬ÔòËıßÐÎOQC1MÊÇÆ½ÐÐËıßÐΣ¬
¡àC1Q¡ÎOM£¬
¶øMµãÔÚÆ½ÃæAPCÄÚ£¬
¡àC1Q¡ÎÆ½ÃæAPC£¬Òò´ËÕýÈ·£»
¢ÜÈô¹ýµãPÇÒÓëÕý·½ÌåµÄÊ®¶þÌõÀâËù³ÉµÄ½Ç¶¼ÏàµÈµÄÖ±ÏßÓÐA1C£¬D1B£¬AC1£¬DB1£¬4Ìõ£®
Á¬½ÓB1C£¬A1C1¡ÎAC£¬ÓÉÕý·½ÌåµÄÐÔÖʿɵá÷AB1CÊǵȱßÈý½ÇÐΣ¬ÔòµãPÈ¡µãD1£¬ÔòÖ±ÏßAD1£¬CD1¡¢D1B1Âú×ãÌõ¼þ£¬¡à¹ýµãPÇÒÓëÖ±ÏßAB1ºÍA1C1Ëù³ÉµÄ½Ç¶¼Îª60¡ãµÄÖ±ÏßÓÐÇÒÖ»ÓÐ3Ìõ£¬Ôòm+n=7Ìõ£¬Òò´ËÕýÈ·£®
ÆäÖÐÕýÈ·ÃüÌâΪ¢Ú¢Û¢Ü£¬Æä¸öÊýΪ3£®
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²éÁËÕý·½ÌåµÄÐÔÖÊ¡¢Æ½ÐÐÏß·ÖÏ߶γɱÈÀý¶¨Àí¡¢ÏßÃæÆ½ÐеÄÅж¨ÓëÐÔÖʶ¨Àí¡¢¿Õ¼ä½Ç£¬¿¼²éÁ˿ռäÏëÏóÄÜÁ¦¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªÔ²O£ºx2+y2=4ºÍµã$M£¨{1£¬\sqrt{2}}£©$£¬ABΪ¹ýµãMµÄÏÒ£®
£¨¢ñ£©Èô$|AB|=2\sqrt{3}$£¬ÇóÖ±ÏßABµÄ·½³Ì£»
£¨¢ò£©ÇóÏÒABµÄÖеãµÄ¹ì¼£·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Èô¹ØÓÚxµÄ·½³Ìx2+$\frac{2a{x}^{2}}{{x}^{2}+1}$+a2-1=0ÓÐΨһ½â£¬ÔòʵÊýaµÄֵΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªÔ²C£º£¨x-1£©2+£¨y-2£©2=2ÍâÒ»µãP£¨2£¬-1£©£¬¹ýµãP×÷Ô²CµÄÇÐÏßPA£¬PB£¬ÆäÖÐA£¬BÊÇÇе㣮
£¨1£©ÇóPA£¬PBËùÔÚµÄÖ±Ïß·½³Ì£»
£¨2£©Çó|PA|£¬|PB|µÄÖµ£»
£¨3£©ÇóÖ±ÏßABµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Ê¹ÓôøÓà³ý·¨Ö¤Ã÷£¬¶ÔÈÎÒâÕýÕûÊýn£¬ÓУ¨x-a£©¶¼ÊÇ£¨xn-an£©µÄÒ»¸öÒòʽ£®²¢ÓÉ´ËÖ¤Ã÷f£¨x£©¡Ô£¨x-a£©•h£¨x£©+f£¨a£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Éè0£¼a£¼1£¬ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}-xlnx£¬0£¼x¡Üa\\ \frac{1}{e}cos2¦Ðx£¬a£¼x¡Ü1\end{array}$£¬Èô¶ÔÈÎÒâb¡Ê£¨0£¬$\frac{1}{e}}$£©£¬º¯Êýg£¨x£©=f£¨x£©-bÖÁÉÙÓÐÁ½¸öÁãµã£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$£¨{0£¬\frac{1}{e}}]$B£®$£¨{0£¬\frac{3}{4}}]$C£®$[{\frac{1}{e}£¬1}£©$D£®$[{\frac{1}{e}£¬\frac{3}{4}}]$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªÃüÌâp£º·½³Ìx2+mx+1=0ÓÐÁ½¸ö²»ÏàµÈµÄ¸ºÊµ¸ù£¬ÃüÌâq£ºº¯Êýy=x2-2mx-3ÔÚÇø¼ä£¨1£¬3£©ÉÏÓÐ×îСֵ£®Èô¡°p»òq¡±ÎªÕ棬¶ø¡°pÇÒq¡±Îª¼Ù£¬ÇóʵÊýmȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÍÖÔ²E£º$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄÓÒ¶¥µãA£¨2£¬0£©ºÍÉ϶¥µãB£¬Ö±ÏßAB±»Ô²T£ºx2+y2-10x+16=0Ëù½ØµÃµÄÏÒ³¤Îª$\frac{{12\sqrt{7}}}{7}$£®
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©¹ýÍÖÔ²EµÄÓÒ½¹µã×÷²»¹ýÔ­µãµÄÖ±ÏßlÓëÍÖÔ²E½»ÓÚM£¬NÁ½µã£¬Ö±ÏßMA£¬NAÓëÖ±Ïßx=3·Ö±ð½»ÓÚC£¬DÁ½µã£¬¼Ç¡÷ACDµÄÃæ»ýΪS£¬ÇóSµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÔÚÈýÀâ×¶P-ABCÖУ¬PA¡Íµ×ÃæABC£¬¡ÏACB=90¡ã£¬AE¡ÍPBÓÚE£¬AF¡ÍPCÓÚF£¬ÈôPA=AB=2£¬Ôòµ±¡÷AEFµÄÃæ»ý×î´óʱ£¬BC=$\frac{\sqrt{6}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸